跳到主要內容

簡易檢索 / 詳目顯示

研究生: 彭仁賓
Jen-pin Peng
論文名稱: 直覺模糊環境下多重品質特性最佳化問題之研究
The Study of Optimizing Multi-response Problems with Intuitionistic Fuzzy Set
指導教授: 葉維磬
Wei-ching Yeh
賴宗智
Tsung-chih Lai
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 78
中文關鍵詞: 多重品質特性問題田口方法直覺模糊集合多屬性決策方法理想解類似度順序偏好法多準則妥協排序法相似性測度法
外文關鍵詞: Multi-response problem, Taguchi Method, Intuitionistic Fuzzy Sets, Multi-Attribute Decision Making, TOPSIS Method, VIKOR Method, Similarity-Based Method
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 田口方法(Taguchi Method)提供企業一個可以有效提昇品質的模式。然而,多數田口方法的應用只能針對單一品質特性實施參數設定的最佳化。近年來,多準則決策(Multiple Criteria Decision Making, MCDM)方法被廣泛用來解決多重品質特性最佳化(Multi-Response Optimization)問題。
    在考量工程人員進行多重品質最佳化問題選擇時,會有如「重要」或「優秀」模糊概念選擇所產生含糊和猶豫的情況。近年來,直覺模糊集合的概念已被發現在處理含糊和猶豫情況比起模糊集合有效。
    本文重點在研究系統方法及探索在直覺模糊環境下多重品質最佳化問題,而當中的每個品質回應值的重要程度,由工程師選擇後運用直覺模糊推論所給定。
    本研究所提出的方法,用於處理多重品質最佳化問題,可評估各品質參數回應值的直覺模糊集合數據,包含理想解類似度順序偏好法(TOPSIS)、多準則妥協排序法(VIKOR)及相似性測度方法。這些解決方案可減少直覺模糊運算時的複雜度,並提高在直覺模糊環境下的多重品質最佳化問題的效率。
    文中提供電漿輔助化學汽化沈積(PECVD)製程和雙邊表面黏著技術電子組裝作業兩個案例,用來驗證研究方法的有效性。這些研究案例顯示所提出的研究方法對於確定最佳因子水準組合是有效率的方案,其不同於過去所提出的多重品質最佳化方法,不僅使用的直覺模糊推論優於模糊推論,在計算速度上也比過去研究更有效率。


    The Taguchi method provides an effective framework for improving quality in industry. However, it determines the optimal setting of process parameters according to only single response. For the sake of optimizing multi-response problems, multiple criteria decision making (MCDM) methods have been extensively utilized in recent years.
    In considering an engineer's opinion in optimizing a multi-response problem, it must be paid to vagueness and hesitancy in revealing his or her perceptions of a fuzzy concept such as 'importance' or 'excellence'. Recently, the notion of intuitionistic fuzzy sets (IFSs) has been found to be more effective than that of fuzzy sets for dealing with vagueness and hesitancy.
    This thesis focuses on state systems and explores optimization of multi-response problems with IFSs, in which the importance of each response is given by an engineer as IFS.
    In the proposed methods, the TOPSIS method, VIKOR method and the similarity measure method are proposed for optimizing multi-response problems, where the weight of various responses are assessed in terms of IFSs. This scheme can eliminate the need for complicated intuitionistic fuzzy arithmetic operations and increase the efficiency of solving multi- response optimization problems in intuitionistic fuzzy environments.
    Two case studies of plasma-enhanced chemical vapor deposition (PECVD) and double-sided surface mount technology electronic assembly operation are used to demonstrate the effectiveness of the proposed methods. These case studies show that the proposed methods are useful schemes to efficiently determine the optimal factor-level combination. The proposed methods differ from previous approaches for optimizing multi-response problems, not only in that the proposed methods use IFSs rather than fuzzy sets, but also in that the calculations are more efficient.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 X 一、緒論 1 1-1研究背景 1 1-2文獻回顧 1 1-3研究目的 6 1-4論文架構 7 二、研究理論 10 2-1田口方法 10 2-1-1直交表 11 2-1-2品質影響因子 11 2-1-3品質損失函數 13 2-1-4信號雜音比 17 2-2直覺模糊理論 18 2-3基於直覺模糊集合的多屬性決策 22 2-4 TOPSIS法[45] 23 2-5 VIKOR法[46-48] 27 三、最佳化模式 32 3-1前言 32 3-2模式定義 33 3-2-1品質損失函數(quality loss function) 33 3-2-2相似性測度公式 34 3-3 最佳化模式一(結合田口與TOPSIS法求解直覺模糊環境下 多重品質最佳化問題研究) 35 3-4 最佳化模式二(結合田口與VIKOR法最佳化於直覺模糊環境下 多重品質問題研究) 37 3-5 最佳化模式三(基於相似性測度方法的直覺模糊集合多重品質 最佳化問題研究) 41 四、討論與結論 45 4-1 案例分析 45 4-1-1 案例一 45 4-1-2 案例二 48 4-2最佳化模式一案例分析 49 4-3最佳化模式二案例分析 52 4-3-1 案例一 52 4-3-2 案例二 55 4-4 最佳化模式三案例分析 58 4-4-1 案例一 58 4-4-2 案例二 61 4-5 各模式實例分析與討論 63 4-5-1 最佳化模式一 63 4-5-2 最佳化模式二 64 4-5-2 最佳化模式三 68 五、結論與建議 71 5-1 結論 71 5-2 未來研究建議 72 參考文獻 74

    1.Taguchi G., Introduction to Quality Engineering, Asian Productivity Organisation, Tokyo, 1986.
    2.Phadke M.S., Quality Engineering Using Robust Design, Prentice-Hall PTR, Upper Saddle River, NJ,1995.
    3.Elsayed E.A. and Chen A., “Optimal levels of process parameters for products with multiple characteristics”, International Journal Production Research, Vol. 31, No. 5, pp. 1117-32, 1993.
    4.Su C.T. andTung L.I., “Multi-response robust design by principal components analysis”, Total Quality Management, Vol. 8, No. 6, pp. 409-416, 1997.
    5.Tung L.I., Su C.T. and Wang C.H, “The optimization of multi-response problems in the Taguchi method”, International Journal of Quality & Reliability Management, Vol. 14, No. 4, pp. 367-380, 1997.
    6.Antony J., “Simultaneous optimisation of multiple quality characteristics in manufacturing processes using Taguchi's quality loss function”, International Journal of Advanced Manufacturing Technology, Vol. 17, No. 2, pp. 134-138, 2001.
    7.Singh H. and Kumar P., “Optimizing multi-machining characteristics through Taguchi's approach and utility concept”, Journal of Manufacturing Technology Management, Vol. 17, No. 2, pp. 255-274, 2006.
    8.özler C., KocakoÇI.D. and SehirlioGlu A.K., “Using analytic hierarchy process economics in multivariate loss functions”, International Journal of Production Research, Vol. 46, No 4, pp.1121–1135, 2008.
    9.Jean A., Liang F. and Chung C.P., “Robust product development for multiple quality characteristics using computer experiments and an optimization technique”, International Journal of Production Research, Vol.46 No.12, pp.3415–3439, 2008.
    10.Jiang B.C., Wang C.C., Lu J., Jen C.H. and Fan S.K., “Using simulation techniques to determine optimal operational region for multi-responses problems”, International Journal of Production Research, Vol.47 No.12, pp.3219–3230, 2009.
    11.Pan J.N., Pan J. and Lee C.Y., “Finding and optimising the key factors for the multiple-response manufacturing process”, International Journal of Production Research, Vol.47 No.9, pp.2327–2344, 2009.
    12.Liao H.C., “Using PCR-TOPSIS to optimise Taguchi’s multi-response problem”, International Journal of Advanced Manufacturing Technology, Vol. 22, No. 9-10, pp. 649-55, 2003.
    13.Tarng Y.S. and Yang W.H., “Application of the Taguchi method to the optimisation of the submerged arc welding process”, Materials and Manufacturing Processes, Vol. 13, No. 3, pp. 455–467, 1998.
    14.Reddy P.B.S., Nishina K., and Babu A.S., “Unification of robust design and goal programming for multiresponse optimization—a case study”, Quality and Reliability Engineering International, Vol. 13, No. 6, pp. 371–383, 1997.
    15.Tong L.I., Chen C.C., and Wang C.H., ”Optimization of multi-response processes using the VIKOR method”, International Journal of Advanced Manufacturing Technology, Vol. 31, pp. 1049-1057, 2006.
    16.Tong L.I. and Su C.T., “Optimizing multi-response problems in the Taguchi method by fuzzy multiple attribute decision making”, Quality and reliablity engineering international, Vol. 13, No. 1, pp. 25-34, 1997.
    17.Lin J.L., Wang K.S., B.H. Yan, and Y.S. Tarng, “Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics”, Journal of Materials Processing Technology, Vol. 102, No. 1-3, pp. 48-55, 2000.
    18.Lin C.L., Lin J. L. and Ko T. C., “Optimisation of the EDM Process Based on the Orthogonal Array with Fuzzy Logic and Gey Relational Analysis Method”, International Journal of Advanced Manufacturing Technology, Vol. 19, No. 4, pp. 271-277, 2002.
    19.Lu D. and Antony J., “Optimization of multiple responses using a fuzzy-rule based inference system”, International Journal of Production Research, Vol. 40, No. 7, pp. 1613-1625, 2002.
    20.Antony J., Anand R.B., Kumar M. and Tiwari M.K., “Multiple response optimization using Taguchi methodology and neuro- fuzzy based model”, Journal of Manufacturing Technology Management, Vol. 17, No. 7, pp. 908-925, 2005.
    21.PalS. and Gauri S.K., “Assessing effectiveness of the various performance metrics for multi-responseoptimization using multiple regression”, Computers and Industrial Engineering, Vol. 59, No. 4, pp.976–985, 2010.
    22.Zadeh L.A., “Fuzzy Sets”, Information and Control, Vol. 8, pp.338-353, 1965.
    23.Park J.H., Cho H.J. and Kwun Y.C., “Extension of the VIKOR method for group decision making with interval-valued intuitionistic fuzzy information”, Fuzzy Optimization and Decision Making, Vol.10, No.3, pp.233-253, 2011.
    24.Mavi R.K., Farid S. and Jalili A.,” Selecting the Construction Projects Using Fuzzy VIKOR Approach”, Journal of Basic and Applied Scientific Research,Vol.2, No.9, pp.9474-9480, 2012.
    25.Roostaee R., Izadikhah M., Lotfi F.H. and Rostamy-Malkhalifeh M.,“A Multi-Criteria Intuitionistic Fuzzy Group Decision Making Method for Supplier Selection with VIKOR Method”, International Journal of Fuzzy System Applications,Vol.2, No.1, pp.1-17, 2012.
    26.Wang Z., Li K.W. and Xu J.,“A mathematical programming approach to multi-attribute decision making with interval -valued intuitionistic fuzzy assessment information”,Expert Systems with Applications,Vol.38, No.10, pp.12462-12469, 2011.
    27.NayagamV. L.G.,Muralikrishnan S. and Sivaraman G.,” Multi-criteria decision-making method based on interval-valued intuitionistic fuzzy sets”,Expert Systems with Applications, Vol.38, No.3, pp.1464-1467,2011.
    28.Bashiri M. and Hosseininezhad S.J., “Fuzzy Development of Multiple Response Optimization”, Group Decision and Negotiation, Vol.21, No.3, pp.417-438, 2012.
    29.Taguchi G., “Performance Analysis Design”, International Journal of ProductionResearch, Vol. 16, pp.521-530, 1978.
    30.蘇朝墩,產品穩健設計-田口品質工程方法的介紹和應用,中華民國品質管制學會,1997。
    31.蘇朝墩,品質工程,中國民國品質學會,2009。
    32.Atanassov K.T., “Intuitionistic fuzzy sets ”,Fuzzy Sets and Systems, Vol. 20, No. 1, pp. 87-96, 1986.
    33.Atanassov K.T., Intuitionistic Fuzzy Sets: Theory and Applications, Physica- Verlag, Heidelberg, 1999.
    34.Szmidt E. and Kacprzyk J., “Distances between intuitionistic fuzzy sets“, Fuzzy Sets and Systems, Vol. 114, No. 3, pp. 505-518, 2000.
    35.De S.K., Biswas R., and A.R. Roy, “Some operations on intuitionistic fuzzy sets”, Fuzzy Sets and Systems, Vol. 114, No. 3, pp. 477-484, 2000.
    36.Liu H.W. and Wang G.J., “Multi-criteria decision-making methods based on intuitionistic fuzzy sets”, European Journal of Operational Research, Vol. 179, No. 1, pp. 220-233, 2007.
    37.Xu Z.S., “Some Similarity Measures of Intuitionistic Fuzzy Sets and Their Applications to Multiple Attribute Decision Making”, Fuzzy Optimization and Decision Making, Vol. 6, No. 2, pp. 109-121, 2007.
    38.Boran F.E., Genc S., Kurt M. and Akay D. ,“A Multi-Criteria Intuitionistic Fuzzy Group Decision Making for Supplier Selection with TOPSIS Method”,Expert Systems with Applications, Vol.36, No. 8, pp.11363-11368, 2009.
    39.Li D. F., “Multiattribute decision making models and methods using intuitionistic fuzzy sets”, Journal of Computer and System Sciences, Vol. 70, No. 1, pp. 73-85, 2005.
    40.Liu H. W. and Wan G. J.G., “Multi-criteria decision-making methods based on intuitionistic fuzzy sets”, European Journal of Operational Research, Vol. 179, No. 1, pp. 220-233, 2007.
    41.Xu Z. and Yager R. R., “Dynamic intuitionistic fuzzy multi-attribute decision making”, International Journal of Approximate Reasoning, Vol. 48, No. 1, pp. 246-262, 2008.
    42.Xu Z., “A Deviation-Based Approach to Intuitionistic Fuzzy Multiple Attribute Group Decision Making”, Group Decision and Negotiation, Vol. 19, No. 1, pp. 57-76, 2009.
    43.Wang P., “QoS-aware web services selection with intuitionistic fuzzy set under consumer’s vague perception”, Expert Systems with Applications, Vol. 36, No. 3, pp. 4460-4466, 2009.
    44.Li D. F., Wang Y. C., Liu S., and Shan F., “Fractional programming methodology for multi-attribute group decision-making using IFS”,Applied Soft Computing, Vol. 9, No. 1, pp. 219-225, 2009.
    45.Hwang C.L. and Yoon K., Multiple Attributes Decision Making Methods and Applications, Springer, New York, 1981.
    46.Opricovic S., and Tzeng G. H., “Compromise solution by MCDM methods:A comparative analysis of VIKOR and TOPSIS ”,European Journal of Operational Research, Vol.156,No. 2, pp.445-455, 2004.
    47.Zeleny M., Multiple criteria decision making. New York: McGraw-Hill , 1982.
    48.Olson D.L., “Comparison of Weights in TOPSIS Models”, Mathematical and Computer Modelling,“ Vol. 40, No.7-8, pp.721-727, 2004.
    49.Lin Y. H., Lee P. C., Chang T. P., and Ting H. I. “Multi-attribute group decision making under the condition of uncertain information“, Automation in Construction, Vol.17, No.6, pp.792-797,2008
    50.Shyur H. J., and Shih H. S., “A hybrid MCDM model for strategic vendor selection“, Mathematical and Computer Modelling, Vol.44, No.7-8, pp.749-761.
    51.Opricovic S., “ Multicriteria optimization of civil engineering systems”, Faculty of Civil Engineering, Belgrade, 1998.
    52.Liu H.W., “New similarity measures between Intuitionistic fuzzy sets and between elements“, Mathematical and Computer Modelling, Vol.42, pp.61-70, 2005.
    53.Peace G.S., Taguchi Methods: A Hands-On Approach, Addison-Wesley, Massachusetts, USA, 1993.

    QR CODE
    :::