跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄒雲青
Yun-Ching Tsou
論文名稱: 利用具環境友善的地球化學調控法 現地降低鎘於污染水稻土壤中的生物有效性
Mitigating cadmium phytoavailability in contaminated paddy soils via in situ eco-friendly geochemical amendments
指導教授: 林居慶
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 89
中文關鍵詞: 生物有效性零價鐵硫酸鹽環境友善czcA植栽試驗
外文關鍵詞: Cadmium, phyto-availability, zero-valent, sulfate, eco-friendly, czcA, pot experiments
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由環境友善的地球化學調控手法,於受到重金屬鎘污染之稻作農業用地土壤中添加零價鐵與硫酸鹽,希望可以降低鎘對於稻作植體的生物有效性,並且達到降低鎘累積至食米濃度的目的。試驗結果顯示,在稻作栽種覆水期間的孔隙水中所含有之親硫重金屬濃度包含鎘、銅、鋅等皆有顯著的降低趨勢,並會隨鐵濃度添加量而降低,但硫酸鹽的添加並沒有依照預期的模式將重金屬轉化為金屬硫化物沉澱;在試驗最終所收成的糙米中所檢驗出的鎘的濃度時,鐵的添加確實可以使鎘累積至糙米中的濃度降低在食米標準以內,但硫酸鹽的添加卻仍然有鎘累積的現象產生,表示降低孔隙水中重金屬的濃度仍然無法降低糙米累積吸收鎘的量。土壤中的菌相組成豐富度除了低鐵組比控制組低之外,其餘組別均比控制組高,表示本試驗中所使用的地化調控手法對於環境為友善的;由低鐵組的菌相豐富度比控制組低的結果可知而土壤中菌相組成豐富度會受到金屬壓力的影響使菌相豐富度降低。最後,由土壤中菌群對於鎘的抗性基因czcA 表現量可知在本研究所使用的地球化學調控手法確實能降低重金屬鎘具生物有效性的潛勢;但czcA 的表現量多寡也會受到地化參數的影響。


    In this study, zero-valent iron and sulfate were added to the agricultural land
    of rice contaminated with heavy metal cadmium by eco-friendly geochemical
    amendments. Expected that the bioavailability of cadmium to rice plants can be
    mitigated and the accumulation of cadmium could be reduced. The results show
    that the concentration of cadmium in porewater was significantly reduced with
    the addition of iron concentration, but the addition of sulfate did not convert to
    the sulfide in the soil system. Such decreases in the phytoavailability of metals
    to rice roots did not significantly lead to mitigating the accumulation of Cd in
    the harvested brown rice. The richness of bacterial communities in the soil was
    lower than that of the control group except for the addition of the low Fe group,
    and the other groups were higher than the control group. These results also
    showed that bacterial communities in the soil were affected by the metal pressure
    of cadmium, which reduced the bacterial richness. From the amount of cadmium
    resistance gene czcA in the soil, it is known that the geochemical regulation
    techniques used in this study can indeed reduce the bioavailability of heavy metal
    cadmium, but the amount of czcA expression will also be affected by the
    geochemical parameters.
    In summary, the geochemical amendments in this study are eco-friendly to
    the environment. The addition of the valent-iron amendment has a better effect
    to stabilize the cadmium in the soil, reduce the phytoavailability of cadmium.

    摘要 ...................................................................................................................... i Abstract ............................................................................................................... ii 誌謝 ..................................................................................................................... ii 目錄 .................................................................................................................... iv 圖目錄 ............................................................................................................... vii 表目錄 .............................................................................................................. viii 第一章 前言 .................................................................................................. 1 1.1 研究背景 .............................................................................................. 1 1.2 研究目的 ................................................................................................... 3 第二章 文獻回顧 .......................................................................................... 4 2.1 稻田土壤受重金屬污染的危害與傳統整治上的缺點 .......................... 4 2.2 鎘在稻作植體當中的傳輸累積和抑制方式 .......................................... 5 2.3 重金屬鎘在環境中的生物有效性 ........................................................... 7 2.4 環境因子對於鎘在土壤系統相態分布之影響 .................................... 10 2.4.1 氧化還原電位(ORP) ....................................................................... 10 2.4.2 pH 值 ................................................................................................ 12 2.4.3 鐵 ..................................................................................................... 12 2.4.4 硫 ..................................................................................................... 14 2.4.5 微生物因子 ..................................................................................... 15 2.5 降低土壤中鎘生物有效性之方法 ........................................................ 17 第三章 研究方法 ........................................................................................ 19 v 3.1 土壤配置 ................................................................................................ 19 3.2 稻作育苗、轉植與栽培 ........................................................................ 20 3.3 孔隙水採樣 ............................................................................................ 22 3.4 植栽試驗所需之化學分析 .................................................................... 23 3.4.1 土壤有機質含量(燃燒法) .............................................................. 23 3.4.2 土壤粒徑分析(比重計試驗法) ...................................................... 24 3.4.3 土壤陽離子交換容量(醋酸納法) .................................................. 26 3.4.4 土壤與孔隙水中pH 與ORP 量測 ................................................ 26 3.4.5 可被稀鹽酸溶解萃取出之土壤總鐵與亞鐵分析 ......................... 27 3.4.6 土壤酸揮發性硫化物(acid-volatile sulfide, AVS)分析 ................. 27 3.4.7 土壤中鎘分析(王水消化法) .......................................................... 28 3.4.8 土壤序列萃取(鎘) ........................................................................... 28 3.4.9 孔隙水中硫酸鹽與硝酸鹽濃度定量 ............................................. 30 3.4.10 孔隙水中DOC 濃度定量 ............................................................. 30 3.4.11 孔隙水中硫化物濃度定量 ............................................................ 31 3.4.12 孔隙水中亞鐵濃度定量 ............................................................... 31 3.4.13 孔隙水中鎘濃度定量 ................................................................... 31 3.4.14 米粒中鎘濃度定量 ....................................................................... 32 3.5 植栽試驗土壤中分生分析 ..................................................................... 32 3.5.1 土壤中菌相DNA 萃取.................................................................... 32 3.5.2 利用PCR 定性土壤中的抗性基因 ................................................. 33 3.5.3 利用qPCR 定量土壤中的抗性基因 ............................................... 33 第四章 結果與討論 .................................................................................... 35 4.1 試驗土壤性質與背景重金屬濃度 ........................................................ 35 4.2 稻作生長過程 ........................................................................................ 38 4.3 土壤系統中對影響鎘穩定性之地化參數分析 .................................... 45 4.4 地化調控對於鎘以及其他重金屬在土壤系統中的穩定性 ................ 47 4.5 地化調控對於鎘在秈稻糙米中的累積性 ............................................ 49 4.6 土壤中的菌相組成 ................................................................................. 52 4.6.1 土壤中的菌相豐富度 ..................................................................... 52 4.6.2 各試驗組別土壤中菌相的差異性 .................................................. 56 4.6.3 抗性基因定性定量結果 .................................................................. 62 第五章 結論與建議 ......................................................................................... 64 5.1 結論 ........................................................................................................ 64 5.2 建議 ........................................................................................................ 65 參考文獻 ........................................................................................................... 66

    Adriano, Domy C. 2001. "Trace elements in terrestrial environments:
    Biogeochemistry, bioavailability, and risks of metals, 2nd." In.: Springer-
    Verlag, New York.
    Ahmad, M., A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M.
    Vithanage, S. S. Lee, and Y. S. Ok. 2014. 'Biochar as a sorbent for
    contaminant management in soil and water: A review', Chemosphere, 99:
    19-33.
    Akter, Masuda, Heleen Deroo, Ahammad Mostafa Kamal, Mohammed Abdul
    Kader, Elizabeth Verhoeven, Charlotte Decock, Pascal Boeckx, and
    Steven Sleutel. 2018. 'Impact of irrigation management on paddy soil N
    supply and depth distribution of abiotic drivers', Agriculture, Ecosystems
    & Environment, 261: 12-24.
    Andresen, E., and H. Kupper. 2013. 'Cadmium toxicity in plants', Met Ions Life
    Sci, 11: 395-413.
    Borch., Thomas, Ruben Kretzschmar., Andreas Kappler., Philippe Van
    Cappellen., Matthew Ginder-Vogel., Andreas Voegelin., and Kate
    Campbell. 2010. 'Biogeochemical Redox Processes and their Impact on
    Contaminant Dynamics', Environ. Sci. Technol.: 44, 15–23.
    Boshoff, M., M. De Jonge, F. Dardenne, R. Blust, and L. Bervoets. 2014. 'The
    impact of metal pollution on soil faunal and microbial activity in two
    grassland ecosystems', Environ Res, 134: 169-80.
    67
    Bruins, M. R., S. Kapil, and F. W. Oehme. 2000. 'Microbial resistance to metals
    in the environment', Ecotoxicology and Environmental Safety, 45: 198-
    207.
    Burton, E. D., Bush, R. T., Sullivan, L. A., Hocking, R. K., Mitchell, D. R. G.,
    Johnston, S. G., … Jang, L. Y. 2009. 'Iron-Monosulfide Oxidation in
    Natural Sediments: Resolving Microbially Mediated S Transformations
    Using XANES, Electron Microscopy, and Selective Extractions',
    Environmental Science & Technology, 43(9), 3128–3134.
    Burton, Edward D., Richard T. Bush, Scott G. Johnston, Leigh A. Sullivan, and
    Annabelle F. Keene. 2011. 'Sulfur biogeochemical cycling and novel Fe–S
    mineralization pathways in a tidally re-flooded wetland', Geochimica et
    Cosmochimica Acta, 75: 3434-51.
    Cao, Z. Z., M. L. Qin, X. Y. Lin, Z. W. Zhu, and M. X. Chen. 2018. 'Sulfur
    supply reduces cadmium uptake and translocation in rice grains (Oryza
    sativa L.) by enhancing iron plaque formation, cadmium chelation and
    vacuolar sequestration', Environ Pollut, 238: 76-84.
    Chen, Xue-Ping, Wei-Dong Kong, Ji-Zheng He, Wen-Ju Liu, Sally E. Smith, F.
    Andrew Smith, and Yong-Guan Zhu. 2008. 'Do water regimes affect ironplaque
    formation and microbial communities in the rhizosphere of paddy
    rice?', Journal of Plant Nutrition and Soil Science, 171: 193-99.
    Chen, Z., Y. T. Tang, A. J. Yao, J. Cao, Z. H. Wu, Z. R. Peng, S. Z. Wang, S.
    Xiao, A. J. M. Baker, and R. L. Qiu. 2017. 'Mitigation of Cd accumulation
    in paddy rice (Oryza sativa L.) by Fe fertilization', Environ Pollut, 231:
    68
    549-59.
    Colombo, Claudio, Giuseppe Palumbo, Ji-Zheng He, Roberto Pinton, and
    Stefano Cesco. 2013. 'Review on iron availability in soil: interaction of Fe
    minerals, plants, and microbes', Journal of Soils and Sediments, 14: 538-
    48.
    Crea, F., C. Foti, D. Milea, and S. Sammartano. 2013. 'Speciation of cadmium in
    the environment', Met Ions Life Sci, 11: 63-83.
    de Livera, J., M. J. McLaughlin, G. M. Hettiarachchi, J. K. Kirby, and D. G.
    Beak. 2011. 'Cadmium solubility in paddy soils: effects of soil oxidation,
    metal sulfides and competitive ions', Sci Total Environ, 409: 1489-97.
    de Oliveira, L. M., L. Q. Ma, J. A. G. Santos, L. R. G. Guilherme, and J. T. Lessl.
    2014. 'Effects of arsenate, chromate, and sulfate on arsenic and chromium
    uptake and translocation by arsenic hyperaccumulator Pteris vittata L',
    Environmental Pollution, 184: 187-92.
    Dittmar, J., A. Voegelin, F. Maurer, L. C. Roberts, S. J. Hug, G. C. Saha, M. A.
    Ali, A. B. M. Badruzzaman, and R. Kretzschmar. 2010. 'Arsenic in Soil
    and Irrigation Water Affects Arsenic Uptake by Rice: Complementary
    Insights from Field and Pot Studies', Environmental Science &
    Technology, 44: 8842-48.
    Emerson, D., J. V. Weiss, and J. P. Megonigal. 1999. 'Iron-oxidizing bacteria are
    associated with ferric hydroxide precipitates (Fe-plaque) on the roots of
    wetland plants', Applied and Environmental Microbiology, 65: 2758-61.
    69
    Fiedler, Sabine, Michael J. Vepraskas, and J. L. Richardson. 2007. 'Soil Redox
    Potential: Importance, Field Measurements, and Observations.' in.
    Filgueiras, A. V., I. Lavilla, and C. Bendicho. 2002. 'Chemical sequential
    extraction for metal partitioning in environmental solid samples', Journal
    of Environmental Monitoring, 4: 823-57.
    Fujiwara, Shimpei Uraguchi* and Toru. 2012. 'Cadmium transport and tolerance
    in rice: perspectives for reducing grain cadmium accumulation', Rice,
    5(1),5.
    Fulda, B., A. Voegelin, and R. Kretzschmar. 2013. 'Redox-controlled changes in
    cadmium solubility and solid-phase speciation in a paddy soil as affected
    by reducible sulfate and copper', Environ Sci Technol, 47: 12775-83.
    Ghosh, U., R. G. Luthy, G. Cornelissen, D. Werner, and C. A. Menzie. 2011. 'Insitu
    Sorbent Amendments: A New Direction in Contaminated Sediment
    Management', Environmental Science & Technology, 45: 1163-68.
    Giller, Ken E., Ernst Witter, and Steve P. McGrath. 2009. 'Heavy metals and soil
    microbes', Soil Biology and Biochemistry, 41: 2031-37.
    Guerinot, M. L. 1994. 'MICROBIAL IRON TRANSPORT', Annual Review of
    Microbiology, 48: 743-72.
    Hell, R. 1997. 'Molecular physiology of plant sulfur metabolism', Planta, 202:
    138-48.
    Hemond, David B. Senn and Harold F. 2002. 'Nitrate Controls on Iron and
    Arsenic in an Urban Lake', Science of the Total Environment, 296: 2373-
    70
    76.
    Huang, J. W. W., J. J. Chen, W. R. Berti, and S. D. Cunningham. 1997.
    'Phytoremediation of lead-contaminated soils: Role of synthetic chelates
    in lead phytoextraction', Environmental Science & Technology, 31: 800-
    05.
    Kabata-Pendias., and Krystyna Wiacek. 1985. 'Excessive up take of heavy metals
    by plants from contaminated soils.', Soil Science Annual, 36 (4):33–34.
    Kaci, A., F. Petit, P. Lesueur, D. Boust, A. Vrel, and T. Berthe. 2014. 'Distinct
    diversity of the czcA gene in two sedimentary horizons from a
    contaminated estuarine core', Environ Sci Pollut Res Int, 21: 10787-802.
    Kaplan, H., S. Ratering, P. Felix-Henningsen, and S. Schnell. 2019. 'Stability of
    in situ immobilization of trace metals with different amendments revealed
    by microbial (13)C-labelled wheat root decomposition and effluxmediated
    metal resistance of soil bacteria', Sci Total Environ, 659: 1082-
    89.
    King, G. M., and M. A. Garey. 1999. 'Ferric tron reduction by bacteria associated
    with the roots of freshwater and marine macrophytes', Applied and
    Environmental Microbiology, 65: 4393-98.
    Kirk, Guy. 2004. 'The-Biogeochemistry-of-Submerged-Soils', Chichester: John
    Wiley & Sons.
    Kirkham, M. B. 2006. 'Cadmium in plants on polluted soils: Effects of soil
    factors, hyperaccumulation, and amendments', Geoderma, 137: 19-32.
    71
    Kwon, S., J. Thomas, B. E. Reed, L. Levine, V. S. Magar, D. Farrar, T. S.
    Bridges, and U. Ghosh. 2010. 'EVALUATION OF SORBENT
    AMENDMENTS FOR IN SITU REMEDIATION OF METALCONTAMINATED
    SEDIMENTS', Environmental Toxicology and
    Chemistry, 29: 1883-92.
    Lair, G. J., M. H. Gerzabek, and G. Haberhauer. 2007. 'Retention of copper,
    cadmium and zinc in soil and its textural fractions influenced by long-term
    field management', European Journal of Soil Science, 58: 1145-54.
    Lao, U. L., A. Chen, M. R. Matsumoto, A. Mulchandani, and W. Chen. 2007.
    'Cadmium removal from contaminated soil by thermally responsive elastin
    (ELPEC20) Biopolymers', Biotechnology and Bioengineering, 98: 349-55.
    Lee, C. H., C. H. Wu, C. H. Syu, P. Y. Jiang, C. C. Huang, and D. Y. Lee. 2016.
    'Effects of phosphorous application on arsenic toxicity to and uptake by
    rice seedlings in As-contaminated paddy soils', Geoderma, 270: 60-67.
    Lemanceau, P., D. Expert, F. Gaymard, P. A. H. M. Bakker, and J. F. Briat. 2009.
    'Role of Iron in Plant–Microbe Interactions.' in.
    Li, H. H., Y. T. Liu, Y. H. Chen, S. L. Wang, M. K. Wang, T. H. Xie, and G.
    Wang. 2016. 'Biochar amendment immobilizes lead in rice paddy soils and
    reduces its phytoavailability', Scientific Reports, 6.
    Li, H., N. Luo, Y. W. Li, Q. Y. Cai, H. Y. Li, C. H. Mo, and M. H. Wong. 2017.
    'Cadmium in rice: Transport mechanisms, influencing factors, and
    minimizing measures', Environ Pollut, 224: 622-30.
    72
    Liesack, W., S. Schnell, and N. P. Revsbech. 2000. 'Microbiology of flooded rice
    paddies', Fems Microbiology Reviews, 24: 625-45.
    Liu, J., K. Q. Li, J. K. Xu, J. S. Liang, X. L. Lu, J. C. Yang, and Q. S. Zhu. 2003.
    'Interaction of Cd and five mineral nutrients for uptake and accumulation
    in different rice cultivars and genotypes', Field Crops Research, 83: 271-
    81.
    Lovley, Derek R., Dawn E. Holmes, and Kelly P. Nevin. 2004. 'Dissimilatory
    Fe(III) and Mn(IV) Reduction.' in.
    Luo, L. Y., L. L. Xie, D. C. Jin, B. B. Mi, D. H. Wang, X. F. Li, X. Z. Dai, X. X.
    Zou, Z. Zhang, Y. Q. Ma, and F. Liu. 2019. 'Bacterial community response
    to cadmium contamination of agricultural paddy soil', Applied Soil
    Ecology, 139: 100-06.
    Magrisso, S., Y. Erel, and S. Belkin. 2008. 'Microbial reporters of metal
    bioavailability', Microb Biotechnol, 1: 320-30.
    McLaughlin, M. J., R. M. Lambrechts, E. Smolders, and M. K. Smart. 1998.
    'Effects of sulfate on cadmium uptake by Swiss chard: II. Effects due to
    sulfate addition to soil', Plant and Soil, 202: 217-22.
    Meng, B., X. B. Feng, G. L. Qiu, C. W. N. Anderson, J. X. Wang, and L. Zhao.
    2014. 'Localization and Speciation of Mercury in Brown Rice with
    Implications for Pan-Asian Public Health', Environmental Science &
    Technology, 48: 7974-81.
    Nanzyo, M., H. Yaginuma, K. Sasaki, K. Ito, Y. Aikawa, H. Kanno, and T.
    73
    Takahashi. 2010. 'Identification of vivianite formed on the roots of paddy
    rice grown in pots', Soil Science and Plant Nutrition, 56: 376-81.
    Neilands, J. B. 1981. 'IRON ABSORPTION AND TRANSPORT IN
    MICROORGANISMS', Annual Review of Nutrition, 1(1), 27–46.
    Neumann, R. B., L. E. Pracht, M. L. Polizzotto, A. B. M. Badruzzaman, and M.
    A. Ali. 2014. 'Sealing Rice Field Boundaries in Bangladesh: A Pilot Study
    Demonstrating Reductions in Water Use, Arsenic Loading to Field Soils,
    and Methane Emissions from Irrigation Water', Environmental Science &
    Technology, 48: 9632-40.
    Palleiro, L., C. Patinha, M. L. Rodríguez-Blanco, M. M. Taboada-Castro, and M.
    T. Taboada-Castro. 2016. 'Metal fractionation in topsoils and bed
    sediments in the Mero River rural basin: Bioavailability and relationship
    with soil and sediment properties', Catena, 144: 34-44.
    Qian, Y. Z., C. Chen, Q. Zhang, Y. Li, Z. J. Chen, and M. Li. 2010.
    'Concentrations of cadmium, lead, mercury and arsenic in Chinese market
    milled rice and associated population health risk', Food Control, 21: 1757-
    63.
    Rathnayake, Mallavarapu Megharaj, Nanthi Bolan, and Ravi Naidu. 2010.
    'Tolerance of Heavy Metals by Gram Positive Soil Bacteria', World
    Academy of Science, Engineering and Technology, 3: 1045-49.
    Reddy, C. N., & Patrick, W. H. 1977. 'Effect of Redox Potential and pH on the
    Uptake of Cadmium and Lead by Rice Plants.', Journal of Environment
    Quality, 6(3), 259.
    74
    Roosa, S., R. Wattiez, E. Prygiel, L. Lesven, G. Billon, and D. C. Gillan. 2014.
    'Bacterial metal resistance genes and metal bioavailability in contaminated
    sediments', Environmental Pollution, 189: 143-51.
    Rothenberg, S. E., M. Anders, N. J. Ajami, J. F. Petrosino, and E. Balogh. 2016.
    'Water management impacts rice methylmercury and the soil microbiome',
    Sci Total Environ, 572: 608-17.
    Rothenberg, S. E., L. Windham-Myers, and J. E. Creswell. 2014. 'Rice
    methylmercury exposure and mitigation: A comprehensive review',
    Environmental Research, 133: 407-23.
    Sebastian, A., and M. N. V. Prasad. 2014. 'Cadmium minimization in rice. A
    review', Agronomy for Sustainable Development, 34: 155-73.
    Sebastian, Abin, and Majeti Narasimha Vara Prasad. 2013. 'Cadmium
    minimization in rice. A review', Agronomy for Sustainable Development,
    34: 155-73.
    Silver, S., and L. T. Phung. 1996. 'Bacterial heavy metal resistance: New
    surprises', Annual Review of Microbiology, 50: 753-89.
    Stackebrandt, E., C. Sproer, F. A. Rainey, J. Burghardt, O. Pauker, and H. Hippe.
    1997. 'Phylogenetic analysis of the genus Desulfotomaculum: Evidence
    for the misclassification of Desulfotomaculum guttoideum and description
    of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov.,
    comb. nov', International Journal of Systematic Bacteriology, 47: 1134-
    39.
    75
    Stubner, S. . 2002. 'Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in
    rice field soil by real-time PCR with SybrGreen™ detection. ',
    Microbiological Methods, 50(2), 155–164.
    Sun, L., S. Chen, L. Chao, and T. H. Sun. 2007. 'Effects of flooding on changes
    in Eh, pH and speciation of cadmium and lead in contaminated soil',
    Bulletin of Environmental Contamination and Toxicology, 79: 514-18.
    Sundaray, S. K., B. B. Nayak, S. Lin, and D. Bhatta. 2011. 'Geochemical
    speciation and risk assessment of heavy metals in the river estuarine
    sediments--a case study: Mahanadi basin, India', J Hazard Mater, 186:
    1837-46.
    Tang, J. C., W. Y. Zhu, R. Kookana, and A. Katayama. 2013. 'Characteristics of
    biochar and its application in remediation of contaminated soil', Journal of
    Bioscience and Bioengineering, 116: 653-59.
    Tessier, A., Campbell, P. G. C., & Bisson, M. . 1979. 'Sequential extraction
    procedure for the speciation of particulate trace metals. ', Analytical
    Chemistry, 51(7), 844–851.
    Tessier, Andre, Pg GC Campbell, and M Bisson. 1979. 'Sequential extraction
    procedure for the speciation of particulate trace metals', Analytical
    chemistry, 51: 844-51.
    Ure, A. M., Ph Quevauviller, H. Muntau, and B. Griepink. 1993. 'Speciation of
    Heavy Metals in Soils and Sediments. An Account of the Improvement
    and Harmonization of Extraction Techniques Undertaken Under the
    Auspices of the BCR of the Commission of the European Communities',
    76
    International Journal of Environmental Analytical Chemistry, 51: 135-51.
    Utgikar, V. P., N. Chaudhary, A. Koeniger, H. H. Tabak, J. R. Haines, and R.
    Govind. 2004. 'Toxicity of metals and metal mixtures: analysis of
    concentration and time dependence for zinc and copper', Water Res, 38:
    3651-8.
    Vig, K., M. Megharaj, N. Sethunathan, and R. Naidu. 2003. 'Bioavailability and
    toxicity of cadmium to microorganisms and their activities in soil: a
    review', Advances in Environmental Research, 8: 121-35.
    Wu, G. M., P. J. Hu, J. W. Zhou, B. Dong, L. H. Wu, Y. M. Luo, and P. Christie.
    2019. 'Sulfur application combined with water management enhances
    phytoextraction rate and decreases rice cadmium uptake in a Sedum
    plumbizincicola - Oryza sativa rotation', Plant and Soil, 440: 539-49.
    Wu, S. C., Y. M. Luo, K. C. Cheung, and M. H. Wong. 2006. 'Influence of
    bacteria on Pb and Zn speciation, mobility and bioavailability in soil: A
    laboratory study', Environ Pollut, 144: 765-73.
    Zhang, C. H., Y. Ge, H. Yao, X. Chen, and M. K. Hu. 2012. 'Iron oxidationreduction
    and its impacts on cadmium bioavailability in paddy soils: a
    review', Frontiers of Environmental Science & Engineering, 6: 509-17.
    Zhang, Hongguo, Huosheng Li, Meng Li, Dinggui Luo, Yongheng Chen, Diyun
    Chen, Hailing Luo, Zhenxin Chen, and Keke Li. 2018. 'Immobilizing
    Metal-Resistant Sulfate-Reducing
    Bacteria for Cadmium Removal
    from Aqueous Solutions', Polish Journal of Environmental Studies, 27: 2851-59.
    77
    Zhang, J., W. C. Sun, Z. J. Li, Y. C. Liang, and A. L. Song. 2009. 'Cadmium fate
    and tolerance in rice cultivars', Agronomy for Sustainable Development,
    29: 483-90.

    QR CODE
    :::