| 研究生: |
楊昕芸 Hsin-Yun Yang |
|---|---|
| 論文名稱: |
低熔點聚丙烯彈性與黏著性質研究 Elastic and Adhesive Properties of Low Melting Point Polypropylene |
| 指導教授: |
曹恆光
Heng-Kwong, Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 聚烯烴 、彈性體 、黏著機制 |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用低熔點聚丙烯於適當有機溶劑中呈現之黏彈特性,嘗試將其製備為聚烯烴黏膠(polyolefin adhesive),並應用於鋁箔與聚丙烯膜之貼合研究。比較聚丙烯黏膠及使其分散之溶劑在基材上所表現的潤濕性質,並發現隨著基材粗糙度上升,改變黏膠在基材上的潤濕行為而使接觸面積增加,黏著強度便會提升。以流變儀、示差掃描熱分析儀檢測黏膠物性,發現由馬來酸酐接枝上低熔點聚丙烯配置而成之黏膠,其在固化過程中可呈現流動特性有利滲入基材結構,而固化後則展現可抵抗機械外力之彈體特徵,同時得到越高官能化比例之聚丙烯高分子具越低結晶度之趨勢。最後,利用Lap-joint方法測試各種馬來酸酐接枝比例之聚丙烯黏膠的黏著效果並探討其黏著機制。結果顯示接枝上0.5 %馬來酸酐的聚丙烯黏膠具有最佳的黏著強度6.5 MPa。藉由改變多種實驗參數,如接著處外力加壓、添加化學交聯劑與否、及固化時間等,以建立低熔點聚丙烯黏膠之貼合機制模型。其中,黏膠於基材界面間的作用力和擴散作用與機械結合機制有著密不可分的關係;聚丙烯黏彈體之機械性質則同時受到其化學交聯及物理結晶的程度調控。
This research is focused on the preparation and characterization of polypropylene (PP) based adhesives. The low melting PP was dissolved in organic solvents to prepare the polyolefin adhesive. The adhesive exhibited elastomer-like properties during its curing process and it was applied to adhere the aluminum foil and polypropylene film. The wettability behavior of PP viscose and organic solvents of PP dissolution was measured on these substrates. It was found that as the surface roughness of the substrates increased, the wetting behavior of the adhesive changed (i.e. contact angle decreased) and improved the adhesion performance. Rheometer and differential scanning calorimeter were used to detect the physicochemical properties of the viscose adhesive. The maleic anhydride grafted PP exhibited fluid characteristics during curing process that made the adhesive infiltrate into the substrate structure. After the curing process, the cured adhesive displayed its elastic property to resist the mechanical external force. Also, the PP polymer containing more anhydride functional groups demonstrated lower crystallinity. The adhesion performance of PP viscose with various ratio of maleic anhydride was evaluated by using the lap-joint tests. The adhesive with 0.5 % maleic anhydride grafted PP shows the best adhesive strength of about 6.53 MPa. The mechanical properties of the polyolefin elastomer are controlled by the chemical crosslinking and physical crystallization. To establish an adhesive mechanism model, the experiment was designed to change different parameters such as external pressure, chemical cross-linking agent and curing time, etc. In summary, the adhesion performance matters a lot to both mechanical property of adhesive and interface interactions of adhesive molecules and substrates. Moreover, the diffusion of viscose at the interface of the substrates is closely related to the mechanism of mechanical interlock.
[1] C. L. Weidner and G. J. Crocker, Elastomeric Adhesion and Adhesives. Rubb. Chem. Technol. 33, 1323-1374 (1960).
[2] J. J. Licari, and D. W. Swanson, Adhesives technology for electronic applications: Materials, processing, reliability. 2nd edition, Chapter 3, William Andrew, (2011).
[3] G. Ramarathnam, M . Libertucci, M. M. Sadowski, and T. H. North, Joining of polymers to metal. Welding Research Supplement 71, 483-490 (1992).
[4] W. C. Wake, Theories of adhesion and uses of adhesives: a review. Polymer 19, 291-308 (1978).
[5] S. S. Voiutskii, Autohesion and adhesion of high polymers. Wiley-VCH, New York, USA (1963).
[6] S. S. Voyutskiĭ, The diffusion theory of adhesion. Rubb. Chem. Technol. 33, 748-756 (1960).
[7] S. S. Voyutskii and V. L. Vakula, The role of diffusion phenomena in polymer‐to‐polymer adhesion. J. Appl. Polym. Sci. 7, 475-491 (1963).
[8] A. J. Kinloch, Adhesion and adhesives: science and technology. Springer-Science & Business Media, Berlin, Germany (2012).
[9] S. R. Hartshorn, Structural adhesives: chemistry and technology. Springer Science & Business Media, Berlin, Germany (2012).
[10] S. Brunauer, L. S. Deming, W. E. Deming and E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723-1732 (1940).
[11] A. Dąbrowski, Adsorption-From theory to practice. Adv. Colloid Interface Sci. 93, 135-224 (2001).
[12] S. S. Dukhin, G. Kretzschmar and R. Miller, Dynamics of adsorption at liquid interfaces: theory, experiment, application. Elsevier Science B. V., Amsterdam, Netherlands (1995).
[13] M. Iwamatsu and K. Horii, Capillary condensation and adhesion of two wetter surfaces. J. colloid interface sci. 182, 400-406 (1996).
[14] S. R. Hartshorn, Structural adhesives: chemistry and technology. Springer Science & Business Media, Berlin, Germany (2012).
[15] G. P. Anderson, S. J. Bennett and K. L. Devries, Analysis and testing of adhesive bonds. NTRS, 273 (1977).
[16] E. M. Liston and M. R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review. J. Adhesion Sci. Tech. 7, 1091-1127 (1993).
[17] J. G. Kirkwood and P. B. Frank, The statistical mechanical theory of surface tension. J. Chem. Phys. 17, 338-343 (1949).
[18] D. E. Packham, The mechanical theory of adhesion-Changing perceptions 1925-1991. J. Adhesion 39, 137-144 (1992).
[19] D. E. Packham, Chapter 4. The mechanical theory of adhesion, Handbook of adhesive technology, Marcel Dekker, New York, USA (2003).
[20] D. E. Packham, The mechanical theory of adhesion–A seventy year perspective and its current status. First International Congress on Adhesion Science and Technology. (1998)
[21] W. C. Wake, The rheology of adhesives. Adhesion,191-206 (1961).
[22] P. G. de Gennes, F. Brochard-Wyart and D. Quéré, Capillarity and Wetting Phenomena, Springer, New York, USA (2004).
[23] F. M. Chang, S. J. Hong, Y. J. Sheng and H. K. Tsao, High contact angle hysteresis of superhydrophobic surfaces: hydrophobic defects." Appl. Phys. Letters 95, 064102 (2009).
[24] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia and L. Jiang, Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24, 4114-4119 (2008).
[25] J. S. Rowlinson and B. Widom, Molecular theory of capillarity. The international series of monographs on chemistry. Clarendon (1982).
[26] R. N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988-994 (1936).
[27] A. B. D. Cassie and S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546-551 (1944).
[28] E. Rame, The interpretation of dynamic contact angles measured by the Wilhelmy plate method. J. colloid interface sci. 185, 245-251 (1997).
[29] Antony, P., & De, S. K., Ionic thermoplastic elastomers: A review. Journal of Macromolecular Science, Part C: Polymer Reviews, 41(1-2), 41-77 (2001).
[30] Bazuin, C. G., & Eisenberg, A., Dynamic mechanical properties of plasticized polystyrene‐based ionomers. I. Glassy to rubbery zones. Journal of Polymer Science Part B: Polymer Physics, 24(5), 1137-1153 (1986).
[31] De, S. K., & Bhowmick, A. K., Thermoplastic elastomers from rubber-plastic blends. Ellis Horwood (1990).
[32] Terech, P. and Weiss, R.G. Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chemical Reviews, 97, 3133 (1997).
[33] U. Eisele, Introduction to Polymer Physics, Springer Verlag, New York (1990).
[34] Ikeda S. and Nishinari K., "Weak gel"-type rheological properties of aqueous dispersions of nonaggregated kappa-carrageenan helices, J. Agric. Food Chem, 49, No9 (2001).