| 研究生: |
董彥廷 Yen-ting Tung |
|---|---|
| 論文名稱: |
奈米結構化氧化鋁鋅薄膜之製作與光電性質研究 Study on Fabrication of Nanostructured Al-doped ZnO Films and Their Opto-electrical Properties |
| 指導教授: |
李勝偉
Sheng-wei Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 氧化鋁鋅 、溶膠凝膠法 |
| 外文關鍵詞: | Al-doped ZnO, Sol-gel |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用溶膠凝膠技術搭配旋轉塗佈法製備氧化鋁鋅(ZnO:Al)透明半導體薄膜,其實驗之進行大致可分為兩個部份,第一部分為溶劑的取代,文獻中常見的溶劑為乙二醇甲醚,但卻是環保署管制之二級毒化物,因此本研究擬以實驗室常見之乙醇作為溶劑,希望能在不影響其光、電性質之情況下取代以二醇甲醚。將乙二醇甲醚及乙醇兩種溶劑之前驅物溶膠,分別旋塗於基板上並於氧氣氛下施以600℃之退火處理,實驗中證實兩種溶劑系統所生成之薄膜,皆隨著鋁摻雜濃度的增加,其X光繞射分析可得知薄膜結晶性變差且晶粒尺寸縮小,並於紫外光-可見光光譜可發現光學吸收限有藍位移之趨勢(Burstein-Moss效應)。乙醇系統薄膜最低的片電阻為0.2MΩ/□(1% Al),在波長範圍為400-800 nm之平均光穿透率約84%(± 3%),而乙二醇甲醚系統則為0.83MΩ/□(2% Al),89%(± 3%)。
本研究之第二部份為將乙醇系統之溶膠(1% Al)分別塗佈於矽基奈米柱陣列以及矽基蜂窩狀奈米孔洞陣列上,並於氧氣氛下施以600℃之退火處理,雖然由TEM橫截面影像之觀察,薄膜皆並未能完整地填入結構內,但於光反射率之量測可得知薄膜在結構化矽基材上確實能有效地降低光反射,且在矽基奈米柱結構陣列上之ZnO:Al(1% Al)薄膜其光激發螢光強度將隨著結構的蝕刻秒數增加而上升。
In this investigation, we synthesized the ZnO:Al transparent semiconductor thin film by accompanying spin-coating with sol-gel method. There are two parts in the experiments and the first one is substitution of the solvent. In references, the 2-methoxyethanol was usually used as the solvent but it is prohibited due to its toxicity. Therefore, we try to replace 2-methoxyethanol by ethanol and still keep the optical and electrical properties similarly. The sol of precursors of 2-methoxyethanol and ethanol were coated on substrates respectively and then annealed in oxygen atmosphere at 600℃. The results of XRD analysis indicated that the crystalline quality declined and the grain size decreased since the doped concentration of Al increased. Furthermore, the optical absorption edge showed blue-shift ( Burstein-Mossin effect) in the UV-visible spectra. The sheet resistance of the thin film which was synthesized by ethanol is 0.2MΩ/□(1% Al)and its average optical transmittance is 84% (± 3%) in the range of 400-800nm wavelength, on the other hand, the other’s are 0.83MΩ/□(2% Al)and 89% (± 3%) respectively.
The second part of the experiments was to coat the sol of precursor of ethanol on a nanorod arrays silicon substrate and a honeycomb-shaped nanohole arrays silicon substrate. Next, an annealing process was implemented in oxygen atmosphere at 600℃. Although the nanostructures could not be filled with the thin films according to the observation of cross-section TEM images. But we confirmed that the thin films on the nanostructured substrates could efficiently reduce the optical reflectance by measurements. Moreover, we discovered that the photoluminescence intensities of ZnO:Al (1% Al) thin film on the nanorod arrays silicon substrate increased with the etching time.
1. C. Jagadish, S. J. Pearton, “Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications,” Elsevier, 2006.
2. D. R. Lide, CRC Handbook of Chemistry and Physics, 73th ed.﹔CRC Press: New York, 1992.
3. Base, Jr. C.F., Mesmer, R.E., “The hydrolysis of cations,” Krieger Pub., Florida, USA , 1986.
4. S. J. Pearton, D. P. Norton, K. lp, Y. W. Heo, T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B, 22, 932, 2004.
5. X. L. Wu, G. G. Siu, C. L. Fu, H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett., 78, 2285, 2001.
6. G. Neumann, “On the defect structure of zinc-doped zinc oxide,” Phys. Status Solids B, 105, 605, 1981.
7. W. Water, S. Y. Chu, “Physical and structure properties of ZnO sputtered films,” Mater. Lett., 55, 67, 2002.
8. S. Y Chu, W. Water, J. T. Liaw, “Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering,” J. Eur. Cera. Soc., 23, 1393, 2003.
9. Y. S. Kim, W. P. Tai, “Electrical and optical properties of Al-doped ZnO thin films by sol–gel process,” Appl. Surf. Sci., 253, 4911, 2007.
10.H. Gómez, M. de la L. Olvera, “Ga-doped ZnO thin films Effect of deposition temperature, dopant concentration, and vacuum-thermal treatment on the electrical, optical, structural and morphological properties,” Mater. Sci. Eng. B, 134, 20, 2006.
11.D. Y. Ku, I. H. Kim, I. Lee, K. S. Lee, T. S. Lee, J. h. Jeong, B. Cheong, Y. J. Baik, W. M. Kim, “Structural and electrical properties of sputtered indium–zinc oxide thin films,” Thin Solid Films, 515, 1364, 2006.
12.V. N. Zhitomirsky, E. Çetinörgü, E. Adler, Y. Rosenberg, R. L. Boxman, S. Goldsmith, “Filtered vacuum arc deposition of transparent conducting Al-doped ZnO films,” Thin Solid Films, 515, 885, 2006.
13.Jehad A. M. AbuShama, S. Johnston, T. Moriarty, G. Teeter, K. Ramanathan, R. Noufi, “Properties of ZnOCdSCuInSe2 Solar Cells with Improved Performance,” Prog. Photovolt: Res. Appl., 12, 39, 2004.
14.M. K. Hossain, S. C. Ghosh, Y. Boontongkong, C. Thanachayanont, J. Dutta, “Growth of Zinc Oxide Nanowires and Nonobelts for GasSensing Applications,” J. Metasta. Nanocryst. Mater., 23, 27, 2005.
15.J. S. Kim, W. I. Park, C. H. Lee, G, C. Yi, “ZnO Nanorod Biosensor for Highly Sensitive Detection of Specific Protein Binding,” J. Korean Phys. Soc., 49, 1635, 2006.
16.T. Minami, H. Sato, H. Nanto, S. Takata, “Group Ⅲ impurity doped zinc oxide thin films prepared by RF magnetron sputtering,” Japanese journal of applied physics, 24, L781, 1985.
17.H. Sato, T. Minami, S. Takata, “Highly transparent and conductive group Ⅳ impurity-doped ZnO thin films prepared by radio frequency magnetron sputtering,” J. Vac. Sci. Technol. A, 11, 2975, 1993.
18.陳慧英, 黃定加, 朱晴億, “溶膠凝膠法在薄膜製備上之應用,” 化工技術, 7, 11, 152, 1999.
19.Y. S. Kim, W. P. Tai, S. J. Shu, “Effect of preheating temperature on structural and optical properties of ZnO thin films by sol-gel process,” Thin Solid Films, 491, 153, 2005.
20.M. H. Aslan, A. Y. Oral, E. Menşur, A. Gül, E. Başaran, “Preparation of c-axis-oriented zinc-oxide thin films and the study of their microstructure and optical properties,” Sol. Energ. Mat. Sol. C., 82, 543, 2004.
21.J. H. Lee, K. H. Ko, B. O. Park, “Electrical and optical properties of ZnO transparent conducting films by the sol–gel method,” J. Cryst. Growth, 247, 119, 2003.
22.B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor, ” Recent advances in the liquid-phase syntheses of inorganic Nanoparticles,” Chem. Rev., 104, 3893, 2004.
23.R. Ghosh, G. K. Paul, D. Basak, “Effect of thermal annealing treatment on structural, electrical and optical properties of transparent sol-gel ZnO thin films,” Materials Res. Bull., 40, 1905, 2005.
24.M. Wang, J. Wang, W. Chen, Y. Cui, L. Wang, “Effect of preheating and annealing temperatures on quality characteristics of ZnO thin film prepared by sol–gel method,” Mater. Chem. Phys., 97, 219, 2006.
25.C. J. Brinker, G. W. Scherer, “Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing,” Academic Press: San Diego, CA, 1990.
26.黃惠良等著, ”太陽電池,” 五南圖書出版股份有限公司, 2008.
27.楊明輝, ”金屬氧化物透明導電材料的基本原理,” 工業材料, 179, 134, 2001.
28.K. L. Chopra, S. Major, D. K. Pandya, “Transparent conductors-A status review,” Thin Solid Films, 102, 1, 1983.
29.I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films-Basic optical properties and applications to energy-efficient windows,” J. Appl. Phys., 60, R123, 1986.
30.吳伯倫, “利用新穎奈米遮罩製備低維度矽鍺奈米結構及其光電性質之研究,” 國立中央大學材料科學與工程研究所碩士論文, 2009.
31.林政勳, “應用於太陽光電之自潔性及低反射率之矽與矽鍺奈米孔洞陣列,” 國立中央大學材料科學與工程研究所碩士論文, 2010.
32.謝嘉民, 賴一凡, 林永昌, 枋志堯, “光激發螢光量測的原理、架構及應用,” 奈米通訊, 12, 2, 28, 2005.
33.P. Misra, “Optical polarization anisotropy in nonpolar GaN thin films due to crystal symmetry and anisotropic strain,” Humboldt-university, PhD thesis, 2005.
34.P. Y. Yu, M. Cardona, “Fundamentals of Semiconductors: Physics and Materials Properties, 3rd ed.,” Springer, 2001.
35.J. H. Lee, B. O. Park, “Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol-gel method,” Thin Solid Films, 426, 94, 2003.
36.J. P. Lin, J. M. Wu, “The effect of annealing processes on electronic properties of sol-gel derived Al-doped ZnO films,” Appl. Phys. Lett., 92, 134103-1, 2008
37.J. H. Wang, L. Meng, Y. Qi, M. L. Li, G. M. Shi, M. L. Liu, ” The Al-doping contents dependence of the crystal growth and energy band structure in Al:ZnO thin films,” J. Cryst. Growth, 311, 2305, 2009.
38.D. H. Kim, H. Jeon, G. Kim, S. Hwangboe, V. P. Verma, W. Choi, M. Jeon, “Comparison of the optical properties of undoped and Ga-doped ZnO thin films deposited using RF magnetron sputtering at room temperature,” Optics Communications, 281, 2120, 2008.
39.K. M. Lin, P. J. Tsai, “Growth mechanism and characterization of ZnO:Al multi-layered thin films by sol-gel technique,” Thin Solid Films, 515, 8601, 2007.
40.B. D. Cullity, S. R. Stock, “Element of X-Ray Diffraction, 3nd Edition,” Pearson Eduction International, Chapter 5, 2001.
41.P. Bonasewicz, W. Hirschwald, G. Neumann, “Influence of surface processes on electrical, photochemical, and thermodynamical properties of zinc oxide films,” J. Electrochem. Soc., 133, 2270, 1986.
42.S. Fujihara, A. Suzuki, T. Kimura, “Ga-doping effects on electrical and luminescent properties of ZnO:(La,Eu)OF red phosphor thin films,” J. Appl. Phys., 94, 2411, 2003.
43.陳苡諺, “ZnO:Al透明導電薄膜之特性分析與新穎表面粗糙化結構製備,” 國立中央大學材料科學與工程研究所碩士論文, 2009.
44.J. Tauc, R. Grigorovici, A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Physica status solidi, 15, 627, 1966.
45.K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Viogt, B. E. Gnage, “Mechanisms behind green photo-luminescence in ZnO phosphor powders,” J. Appl. Phys., 79, 7983, 1996.