| 研究生: |
蔡瀚章 Han-Chang Hsai |
|---|---|
| 論文名稱: |
智慧型控制數位化鋰錳電池充電器之研製 Design and Implementation of DSP-based Intelligent Control for Li-ion Battery Charger |
| 指導教授: |
林法正
Faa-Jeng Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 定電流充電 、定電壓充電 、數位訊號處理器 、相移式全橋轉換器 、單相功率因數修正轉換器 、機率型模糊類神經網路 |
| 外文關鍵詞: | Probabilistic fuzzy neural network (PFNN), power factor correction (PFC), phase-shift full-bridge (PSFB), digital signal processor (DSP), constant current (CC) charging, constant voltage (CV) charging |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一只以數位訊號處理器為基礎之機率型模糊類神經網路智慧型控制器控制兩級交流-直流鋰錳電池充電器。此充電器前級為具有主動式功率因數修正之單相交流-直流升壓轉換器;後級為相移式全橋直流-直流降壓轉換器。此充電器將設計對於兩顆鋰錳電池組實現定電流充電以及定電壓充電之混合式充電策略。為了要改善輸出電壓在負載調節時的暫態響應,而機率型模糊類神經網路控制器取代傳統的比例積分控制器。此外,使用所提出之機率型模糊類神經網路控制器可明顯地改善電池組在定電流充電模式轉換定電壓充電模式瞬間的不連續充電電流以及充電電壓之問題。本文將詳細介紹機率型模糊類神經網路的架構以及線上學習法則,而所提之機率型模糊類神經網路控制器在實現混合式充電策略的控制性能將由實驗結果驗證。
A digital signal processor (DSP)-based probabilistic fuzzy neural network (PFNN) is proposed in this study to control a two-stage AC-DC charger. The input stage and output stage of the charger are AC-DC boost converter with power factor correction (PFC) and phase-shift full-bridge (PSFB) DC-DC converter. The designed charger adopts constant-current and constant-voltage (CC-CV) charging strategy to charge two Lithium-ion (Li-ion) battery packs. To improve the transient of voltage regulation during load variation, a PFNN controller is proposed to replace the traditional proportional-integral (PI) controller. Moreover, the discontinuous charging voltage and current during the transition between the CC and CV charging modes can also be reduced significantly using the proposed PFNN controller. The network structure and the online learning algorithms of the PFNN controller are introduced in detail. Furthermore, the control performances of the proposed PFNN control system for CC-CV charging are evaluated by some experimental results.
[1] 豐田汽車,http://www.toyota.com.tw/。
[2] 必翔電動車,http://www.pihsiang.com.tw/。
[3] 石金福,張志敏,電動機車用鋰離子電池之特性與發展,電機月刊雜誌,第十二卷,第九期,2002。
[4] “Electric Vehicle Application Handbook For Genesis Sealed-Lead Battery,” Hawker Energy Products Inc., 4th Edition.
[5] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Indust. Electron., vol. 52, no. 5, 2005, pp.1343-1349
[6] 徐聖宇,實現具有單相功率因素修正之高功率全數位電池充電器,碩士論文,國立台北科技大學電力電子產業研發碩士專班,台北市,2009。
[7] 有量科技,http://www.amitatech.com.tw/。
[8] 孫清華,最新可充電電池技術大全(修訂版),全華科技圖書股份有限公司,2003。
[9] D. R. Carroll, “The Winning Solar Car- A Design Guide for Solar Race Car Teams,” 2003.
[10] 周志敏,周紀海,紀愛華,充電器電路設計與應用,人民郵電出版社,2005。
[11] 撲拓科技,www.topology.com.tw。
[12] 楊模樺,電動車發展的關鍵技術-電池模組管理系統(上),工業材料雜誌,第267期,2009。
[13] 林振華,林振富編譯,充電式鋰離子電池材料與應用,全華科技圖書股份有限公司,2001。
[14] 電子工程專輯,http://tech.digitmes.com.tw,數位電源技術之架構與應用。
[15] 電子&電腦資訊網,http://www.compotech.com.tw,數位電源時勢所趨。
[16] D. Perrone, and S. Di Stefano, “Survey of lithium-ion battery performance for potential use in NASA missions,” in Proc. IECEC-97 Conf., vol. 1, pp. 39-41, 1997.
[17] B. Carter, J. Matsumoto, A. Prater, and D. Smith, “Lithium ion battery performance and charge control,” in Proc. IECEC-96 Conf., vol. 1, pp. 363-368, 1996.
[18] G. C. Hsieh, L. R. Chen, and K. S. Huang, “Fuzzy-controlled li-ion battery charge system with active state-of-charge controller,” IEEE Trans. Indust. Electron., vol. 48, no. 3, pp. 585-593, 2001.
[19] A. A. -H. Hussein, and I. Batarseh, “A review of charging algorithms for nickel and lithium battery chargers,” IEEE Trans.Vehicular Technology, vol. 60, no. 3, pp. 830-838, 2011.
[20] C. C. Hua, and M. Y. Lin, “A study of charging control of lead-acid battery for electric vehicles, “ in Proc. ISIE 2000 IEEE International Symposium on Industrial Electronics, vol. 1, pp. 135-140, 2000.
[21] R. C. Cope, and Y. Podrazhansky, “The art of battery charging,” in Proc. Battery Conf. on Applications and Advances, pp. 233-235, 1999.
[22] L. R. Chen, “A design of an optimal battery pulse charge system by frequency-varied technique,” IEEE Trans. Indust. Electron., vol. 54, no. 1, pp. 398-405, 2007.
[23] C. H. Lin , C. Y. Hsieh, K. H. Chen , “A Li-Ion Battery Charger With Smooth Control Circuit and Built-In Resistance Compensator for Achieving Stable and Fast Charging” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 8, pp. 1983–1992, 2010.
[24] B. Y. Chen, and Y. S. Lai, “Switching control technique of phase-shift-controlled full-bridge converter to improve efficiency under light-load and standby conditions without additional auxiliary components,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 1001-1012, 2010.
[25] D. Doncker, R. W. A. A., D. M. Divan, and M. H. Kheraluwala, “A three-phase soft-switched high-power-density DC/DC converter for high-power applications,” IEEE Trans. on Ind. Appl., vol. 27, no. 1, pp. 63-73, 1991.
[26] O. D. Patterson, and D. M. Divan, “Pseudo-resonant full bridge DC/DC converter,” IEEE Trans. Power Electron., vol. 6, no. 4, pp. 671-678, 1991.
[27] J. A. Sabate, V. Vlatkovic, R. B. Ridley, and F. C. Lee, “High-voltage, high-power, ZVS, full-bridge PWM converter employing,” in Proc. APEC ''91 Conf., pp. 158-163, 1991.
[28] J. A. Sabaté, V. Vlatkovic′, R. B. Ridley, and F. C. Lee, “High-voltage, high-power, ZVS, full-bridge PWM converter employing an active snubber,” in Proc. IEEE APEC’91 Conf., 1991, pp. 158–163.
[29] R. D. Middlebrook, and S. Cuk, “A general unified approach to modeling switching-converter power stage,” in Proc. IEEE Power Electronics Specialists Conf., pp. 73–86, 1976.
[30] P. R. K. Chetty, “Modeling and design of switching regulators,” IEEE Trans. Aerospace and Electronic Systems, vol. AES-18, no. 3, pp. 333-344, 1982.
[31] L. K. Wong, F. H. F. Leung, and P. K. S. Tam, “A simple large-signal nonlinear model for fast simulation of zero-current-switch quasi-resonant converters,” in Proc. IEEE PESC ''96 Conf., vol. 2, pp. 1087-1091, 1996.
[32] H. K. Lam, and S. C. Tan, “Stability analysis of fuzzy-model-based control systems: application on regulation of switching DC–DC converter,” IET. Control Theory Appl., vol. 3, no. 8, pp. 1093-1106, 2009.
[33] F. J. Lin, W. J. Hwang, and R. J. Wai, “A supervisory fuzzy neural network control system for tracking periodic inputs,” IEEE Trans. Fuzzy Syst., vol. 7, no. 1, pp. 41-52, 1999.
[34] W. Yu, and X. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 411-420, 2004.
[35] F. J. Lin, H. J. Shieh, P. K. Huang, and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 53, no. 9, pp. 1649-1661, 2006.
[36] Y. Gao, and M. J. Er, “An intelligent adaptive control scheme for postsurgical blood pressure regulation,” IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 475-483, 2005.
[37] F. J. Lin, P. K. Huang, and C. C. Wang, “An induction generator system using fuzzy modeling and recurrent fuzzy neural network,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 260-271, 2007.
[38] D. F. Specht, “Probabilistic neural network,” Neural Netw., vol. 3, no. 1, pp. 190-118, 1990.
[39] K. Z. Mao, K. -C. Tan, and W. Ser “Probabilistic neural-network structure determination for pattern classification,” IEEE Trans. Neural Netw., vol. 11, no. 4, pp. 1009-1016, 2000.
[40] J. C. Pidre, C. J. Carrillo, and A. E. F. Lorenzo, “Probabilistic model for mechanical power fluctuations in asynchronous wind parks,” IEEE Trans. Power Syst., vol. 18, no. 2, pp. 761-768, 2003.
[41] M. Tripathy, R. P. Maheshwari, and H. K. Verma, “Power transformer differential protection based on optimal probabilistic neural network,” IEEE Trans. Power Del., vol. 25, no. 1, pp. 102-112, 2010.
[42] Z. Liu, and H. X. Li, “A probabilistic fuzzy logic system for modeling and control,” IEEE Trans. Fuzzy Syst., vol. 13, no. 6, pp. 848-859, 2005.
[43] H. X. Li, and Z. Liu, “A probabilistic neural-fuzzy learning system for stochastic modeling,” IEEE Trans. Fuzzy Syst., vol. 16, no. 4, pp. 898-908, 2008.
[44] M. Chen and G. A. Rincon-Mora, “Accurate, compact, and power efficient Li-Ion battery charger circuit,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 11, pp. 1180–1184, 2006.
[45] 世界材料綱,http://www.materialsnet.com.tw/DocView.aspx?id=6738。
[46] 杜冠賢,陳耀銘,吳財福,姜士凱,鋰離子電池充電器研製,第六屆台灣電力電子研討會,2007。
[47] 三洋電機,http://battery.sanyo.com/product/。
[48] Texas Instruments Inc., “TMS320F28030/28031/28032/28033/28034/ 28035 piccolo microcontrollers, rev B”, 2009.
[49] Texas Instruments Inc., “TMS320x2802x, 2803x piccolo enhanced pulse width modulator (ePWM) module, rev C”, 2009.
[50] Texas Instruments Inc., “TMS320F2803x piccolo system control and interrupts, rev A”, 2009.
[51] Texas Instruments Inc., “TMS320x2802x, 2803x piccolo analog-to- digital converter (ADC) and comparator, rev B”, 2009.
[52] Texas Instruments Inc., “TMS320x2802x, 2803x piccolo serial peripheral interface (SPI), rev B”, 2009.
[53] 黃治瑋,應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達伺服驅動系統,碩士論文,國立中央大學電機工程學系,桃園,2010。
[54] Texas Instruments Inc., “TMS320F2802x, 2803x piccolo enhanced capture (eCAP) module, rev A”, 2009.
[55] 宋自恆、閻松駿,主動式功率因數修正器之電感設計方式與雜訊對策徹底剖析,新電子科技雜誌,第240期,2006。
[56] 宋自恆、林慶仁,功率因數修正電路之原理與常用元件規格,新電子科技雜誌,第217期,2004。
[57] W. Zhang, G. Feng, Y. Lui, and B.Wu, “A digital power factor correction (PFC) control strategy optimized for DSP,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1474–1485, 2004.
[58] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications, and Design, John Wiley & Sons Ins., 2003.
[59] R. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publishers, 2001.
[60] STW45NM50 Application Note, STMicroelectronics Inc.
[61] 30EPF06 Application Note, International Rectifier Co.
[62] Mcrometals Iron Powder Core Application Note, Micrometals Inc.
[63] P. C. Todd, “UC3854 Controlled Power Factor Correction Circuit Design Application Note,” Texas Instruments Inc., 1999.
[64] MCP4922 Application Note, Microchip Inc.
[65] J. Sabate, V. Vlatkovic, R. Ridley, F. Lee, and B. Cho, “Design consideration for high-voltage high-power full-bridge ZVS PWM converter,” in Proc. APEC’90 Conf., 1990, pp. 275–284.
[66] 許宏遠,燃料電池複合機車用之具有交錯控制直流-直流轉換器研製,碩士論文,國立台北科技大學電機工程所,台北市,2008。
[67] W. T. Mclyman, “Transformer and Inductor Design Handbook,” Marcel Dekker, Inc., 2004.
[68] 趙修科,開關電源中磁性元器件,2004。
[69] Materials Application Note, Magnetics Inc., 2006.
[70] ETD59 Application Note, Magnetics Inc.
[71] MBR40250T Application Note, On Semiconductor Inc.
[72] HTY50-P Application Note, LEM Co.
[73] V. Vlatkovic, J. A. Sabat′e, R. B. Ridley, F. C. Lee, and B. H. Cho, “Small signal analysis of the phase-shifted PWM converter,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 128–135, 1992.
[74] 呂宗翰,智慧型控制雙饋式感應風力發電系統之研製,碩士論文,國立中央大學電機工程學系,桃園,2010。
[75] Z. Liu, and H. X. Li, “A probabilistic fuzzy logic system for modeling and control,” IEEE Trans. Fuzzy Syst., vol. 13, no. 6, pp. 848-859, 2005.
[76] F. J. Lin, P. H. Chou, Y. C. Hung, and W. M. Wang, “Field-programmable gate array-based functional link radial basis function network control for permanent magnet linear synchronous motor servo drive system,” IET Electr. Power Appl., vol. 4, no. 5, pp. 357-372, 2010.