跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉汯紳
Hong-shen Liu
論文名稱: Coherent state and co-adjoint orbits on irreducible representations of SU(4)
指導教授: 江祖永
Otto C.W. Kong
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 法文
論文頁數: 36
中文關鍵詞: 李群相干態
外文關鍵詞: coherent state, Lie group
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們在不可約化的SU(4)李群上明確的建構了相干態並且給出了辛結構


    We give an explicit construction of the SU(4) coherent states for an arbitrary
    irreducible representation, and construct the symplectic structure on the manifold of coherent

    1 Introduction 1 2 Background 2 2.1 Definition of coherent states . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Properties of the coherent states . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Co-Adjoint orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Momentum map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Lie group, Lie algebra of SU(4) and SL(4,C) 10 3.1 The Lie algebra gl4pCq, sl4pCq . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Lie group SL(4,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Lie group SU(4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 Irreducible representations of SU(4) . . . . . . . . . . . . . . . . . . . . . 18 3.5 Invariant one-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Coherent state 20 4.1 Coherent state of SU(4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 The SU(4)-Orbits on PHr1;2;3s . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 Action of sl4pCq on coherent state . . . . . . . . . . . . . . . . . . . . . . 22 4.4 Expectation values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Symplectic structure 24 5.1 Symplectic structure on coherent state . . . . . . . . . . . . . . . . . . . . 24 5.2 Coherent states and orbits of the coadjoint representation . . . . . . . . . . 26 6 Appendix 28 6.1 Invariant one-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.2 Symplectic two-form coecients . . . . . . . . . . . . . . . . . . . . . . . 30

    References
    [1] Schodinger E 1926 Naturwiss. 14 664.
    [2] Glauber R J 1963 Phys. Rev. 131 2766.
    [3] Perelomov A 1972 Commun. Math. Phys. 26 222.
    [4] R. Gilmore 1974 Rev. Mev. de Fisica 23, 142..
    [5] Sven Gnutzmanny and Marek Ku 1998 J. Phys. A: Math. Gen. 31 9871.
    [6] J. M. Radcliffe 1970 J. Phys. A: Gen. Phys. 4 313.
    [7] A. O. Barut and L. Girardello 1971 Commun. math. Phys. 21, 41.
    [8] Wei-Min Zhang, Da Hsuan Feng and Robert Gilmore Rev Mod Phys. 62, 867.
    [9] Marsden J E and Ratiu T S 1994 Introduction to Mechanics and Symmetry (Berlin: Springer).
    [10] Darryl D. Holm 2009 Geometric Mechanics and Symmetry (Oxford).
    [11] Kirillov 1076 Elements of the theory of representations (Berlin: Springer). [12] Barut A O and Raczka R 1977 Theory of Group Representations and Ap- plications (Warsaw: PWN-Polish Scientific).
    [13] K Raghunathant, M Seetharamant, S S Vasant and J Mary Agnes 1992 J. Phys. 4 Math. Gen. 25 1527.
    [14] Flanders H 1963 Differential Forms (New York: Academic).
    [15] Azizollah Shafiekhani 1994 arXiv:hep-th/9408173v1

    QR CODE
    :::