| 研究生: |
陳柏全 Bo-quan Chen |
|---|---|
| 論文名稱: |
應用於中風後肩關節復健之慣性量測系統開發與新量化評估方法 Study of implementing an inertia measurement system and a new quantitative evaluation method on post-stroke rehabilitation of shoulder joint. |
| 指導教授: |
潘敏俊
Min-Chun Pan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生物醫學工程研究所 Graduate Institute of Biomedical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 量化評估 、慣性感測 、復健評估 、評估量表 |
| 外文關鍵詞: | rehabilitation evaluation, inertial measurement system, assessment scale, quantitative evaluation |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統中風後復健評估方式中,臨床上多使用例如傅格-梅爾身體性能量表、沃夫動作功能測試、坦帕手功能量表等李克特量表,傳統評估量表雖已行之有年且評估結果為各界所接受,但其缺點在於評估結果因治療師而異,且李克特量表為量尺分數依級距給分,若個案狀況恰好位於兩個分數之間,會造成給分困難或無法正確描述個案復健成效的情況。
研究中建立一套中風後復健評估使用之慣性感測系統,並基於傳統量表的復健評估準則,提出三種復健成效評估的量化指標,發展客觀的量化評估系統,最後利用中風病患的個案討論本復健成效量化評估方法與傳統復健評估量表之相關性以及優缺點。由量化結果得知本方法可正確反應患者復健前後的差異,驗證利用慣性訊號在復健成效評估上的可行性。
In clinical settings, traditional stroke rehabilitation evaluation methods typically employ FMA, WMFT, TEMPA, and other Likert-type assessment scales. Although traditional assessment scales have a long history and evaluation results accepted widely in various fields, they have the worst disadvantage of variations in results based on different occupational therapists. Likert scales give scale scores based on numerical ranges. If an individual case exists between two scores, scoring becomes problematic and the description of the case’s rehabilitation result may be inaccurate.
This study constructs an inertia measurement system for stroke rehabilitation evaluation and proposes 3 rehabilitation effect evaluation quantitative indicators based on rehabilitation assessment criteria of traditional scales. An objective quantitative evaluation system is subsequently developed, and, finally, a stroke patient case is employed to discuss the correlation between the proposed rehabilitation result quantitative evaluation method and traditional rehabilitation evaluation scales, as well as their advantages and disadvantages. Quantitative results indicate the proposed method accurately reflects patients’ changes between pre- and post-rehabilitation, confirming the feasibility of applying inertial signals to rehabilitation effect evaluation.
[1] A. Fugl-Meyer, L. Jaasko, I. Leyman, S. Olsson, and S. Steglind, “The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance.,” Scand J Rehabil Med, vol. 7, no. 1, pp. 13–31, 1975.
[2] S. L. Wolf, P. A. Catlin, M. Ellis, A. L. Archer, B. Morgan, and A. Piacentino, “Assessing Wolf Motor Function Test as Outcome Measure for Research in Patients After Stroke,” Stroke, vol. 32, no. 7, pp. 1635–1639, 2001.
[3] V. Mathiowetz, G. Volland, N. Kashman, and K. Weber, “Adult norms for the Box and Block Test of manual dexterity,” Am J Occup Ther, vol. 39, no. 6, pp. 386–391, 1985.
[4] K. Sawner and J. LaVigne, Brunnstrom’s Movement Therapy in Hemiplegia: A Neurophysiological Approach. J.B. Lippincott Company, 1992.
[5] R. F. Kirsch and A. M. Acosta, “Techniques for characterizing elbow and shoulder mechanics and neural control in normal and disabled subjects,” in Engineering in Medicine and Biology Society, 1995., IEEE 17th Annual Conference, 1995, vol. 2, pp. 1291 –1292.
[6] 董憲奇, “肘關節神經復健用機器人之改進與臨床研究,” 國立成功大學, 碩士論文, 2002.
[7] 龔品誠, “具量測腕部控制之上肢復健機器人,” 國立成功大學, 碩士論文, 2004.
[8] G. Uswatte, W. H. R. Miltner, B. Foo, M. Varma, S. Moran, and E. Taub, “Objective Measurement of Functional Upper-Extremity Movement Using Accelerometer Recordings Transformed With a Threshold Filter,” Stroke, vol. 31, no. 3, pp. 662–667, 2000.
[9] G. Uswatte, W. L. Foo, H. Olmstead, K. Lopez, A. Holand, and L. B. Simms, “Ambulatory Monitoring of Arm Movement Using Accelerometry: An Objective Measure of Upper-Extremity Rehabilitation in Persons With Chronic Stroke,” Archives of Physical Medicine and Rehabilitation, vol. 86, no. 7, pp. 1498–1501, 2005.
[10] G. Thrane, N. Emaus, T. Askim, and A. Anke, “Arm Use in Patients with Subacute Stroke Monitored by Accelerometry: Association with Motor Impairment and Influence on Self-Dependence,” Journal of Rehabilitation Medicine, vol. 43, no. 4, pp. 299–304, 2011.
[11] 黃國興, 慣性導航系統原理與應用. 全華圖書股份有限公司, 1995.
[12] S. Beeby, Mems Mechanical Sensors. Artech House, 2004.
[13] M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration, 2nd ed. Wiley-Interscience, 2007.
[14] A. Chatfield, Fundamentals of High Accuracy Inertial Navigation. AIAA, 1997.
[15] “My Gyroscope,” HubPages. [Online]. Available: http://mickydee.hubpages.com/hub/My-Gyroscope. [Accessed: 13-Jul-2012].
[16] R. Wang, Y. Zheng, and A. Yao, “Generalized Sagnac Effect,” Phys. Rev. Lett., vol. 93, no. 14, p. 143901, 2004.
[17] R. Anderson, H. R. Bilger, and G. E. Stedman, “‘Sagnac’ effect: A century of Earth-rotated interferometers,” American Journal of Physics, vol. 62, no. 11, pp. 975–985, 1994.
[18] Cynthia C. Norkin and D. Joyce White, Measurement of Joint Motion, A Guide to Goniometry, 3rd ed., 1 vols. F.A. Davis, 2003.
[19] InvenSense, “IMU-3000EVB Application Note.” .
[20] InvenSense, “IMU-3000 Product Specification.” .
[21] Kionix, “KXTF9-2050 Specifications Rev 6.” .
[22] “SIOC實驗板硬體手冊.” 浯陽科技有限公司, 2010.
[23] NXP Semiconductors, “I2C-bus specification and user manual Rev 4.” 2012.
[24] J. Axelson, USB Complete: The Developer’s Guide, Fourth ed. Lakeview Research, 2009.
[25] W. T. Fong, S. K. Ong, and A. Y. C. Nee, “Methods for in-field user calibration of an inertial measurement unit without external equipment,” Measurement Science and Technology, vol. 19, no. 8, p. 085202, 2008.
[26] J. C. Lotters, J. Schipper, P. H. Veltink, W. Olthuis, and P. Bergveld, “Procedure for in-use calibration of triaxial accelerometers in medical applications,” Sensors and Actuators A: Physical, vol. 68, no. 1–3, pp. 221–228, 1998.
[27] J.-S. Wang, Y.-L. Hsu, and J.-N. Liu, “An Inertial-Measurement-Unit-Based Pen With a Trajectory Reconstruction Algorithm and Its Applications,” IEEE Transactions on, Industrial Electronics, vol. 57, no. 10, pp. 3508 –3521, 2010.
[28] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A, vol. 454, no. 1971, pp. 903–995, 1998.
[29] Z. Wu and N. E. Huang, “A study of the characteristics of white noise using the empirical mode decomposition method,” Proc. R. Soc. Lond. A, vol. 460, no. 2046, pp. 1597–1611, 2004.