| 研究生: |
黃偵晃 Jen-Huang Huang |
|---|---|
| 論文名稱: |
對苯醌合對苯二酚表面鈍化矽基太陽電池之研究 Study of surface passivation on silicon solar cell by quinhydrone |
| 指導教授: |
張正陽
Jenq -Yang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 有效生命週期 、矽基太陽電池 、表面鈍化 、對苯醌合對苯二酚 、表面復合速率 |
| 外文關鍵詞: | quinhydrone, surface recombination velocity, effective lifetime, silicon solar cell, surface passivation |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,首先討論不同矽晶片如何影響表面鈍化與太陽電池元件之結果。接著使用對苯醌合對苯二酚(QHY)作為表面鈍化的材料,QHY 表面鈍化的優點為快速、方便、簡單以及效果良好之化學浸泡方法。最後我們將其應用於矽基太陽電池上用以提升開路電壓、填充因子以及轉換效率。
我們對厚度 200 µm 之 30 片矽晶片作 effective lifetime 的量測,分別取好、中、壞三種晶片,以相同的製程方式將其製成太陽電池,而在轉換效率上各為 10.9 %、9.3 %以及 7.4 %。接下來,我們在不同 QHY 濃度與浸泡時間下以 QSSPCD 量測中等矽晶片的 effective lifetime,而在最佳條件為:QHY 濃度 0.01 mol/L,浸泡時間 60 分鐘下有最佳 effective lifetime 值為 788 µs,且表面復合速率為 13 cm/s。再以 XPS 分析其表面鍵結,經由 C1s、O1s、Si 2p 頻譜證實經 QHY 鈍化後矽晶片之表面以及表面底下 2 至 4 nm 存在有Si-O、C-C、C-O 鍵結訊號,表示經處理過的矽晶片其表面缺陷得以改善。
經我們使用 QHY 表面鈍化後的矽薄膜,除改善其表面缺陷也進而提升其 effective lifetime,之後再鍍上 ITO 與電極來製備成矽基太陽電池。最後,在 AM1.5 光源量測下,經 QHY 表面鈍化後之太陽電池其開路電壓從 553.5 mV 增函至 570.7 mV、 FF 從 61.5 %增至 69.62 %,轉換效率則從 11.71 %增至 12.47 %。
In this study, first of all, we discuss how different silicon wafer affect the results of surface passivation and solar cell; then we use the quinhydrone(QHY)
as the surface passivation material. The advantages of QHY are rapid, convenient, easy and good passivation effect in chemical immersion. Finally, we apply surface passivation of QHY on silicon solar cells to enhance the open-circuit voltage, fill factor and conversion efficiency.
We measure the effective lifetime value of 30 pieces of silicon wafers, and select respectively the good, normal and bad, three kinds of silicon wafers to process solar cells, whose conversion efficiency are 10.9%, 9.3% and 7.4%, respectively, under the same procedure. Next, we measure effective lifetime of normal silicon wafers on QSSPCD mode with different QHY concentrations and immersion time. We get the best lifetime value, which is 788 µs, and its SRV is 13 cm/s, on the best condition of 0.01 mol/L with immersion time for 60 miuntes. Then, we analyze its surface bonding by the spectrums of C1s, O1s,
and Si2p of XPS, and verify that these QHY-passivation silicon wafers exist the binding signals of Si-O, C-C and C-O on its surface and under the surface for 2 to 4 nm, and this confirms the fact that the process of QHY passivation would improve the surface defects of silicon wafers.
The surface defects of silicon thin film are improved in the way of QHY surface passivation; in addition, its effective lifetime is promoted; then, we process it into a silicon solar cell after we coat the ITO and electrode on it. Finally, measured by AM1.5 light source, the open circuit voltage of QHY-surface-passivation silicon thin film is increased from 553.5 mV to 570.7 mV, its FF is increased from 61.5% to 69.62%, and its conversion efficiency is increased from 11.71% to 12.47%.
[1] 黃惠良,曾百亨等著,“太陽電池 Solar Cell,”五南出版社(2008)
[2] Swanson, R. M. , “A vision for crystalline silicon photovoltaics,” Progress in Photovoltaics 14 , 443-453(2006)
[3] Parida, B.Iniyan, S. Goic, R. , “A review of solar photovoltaic technologies,” Renewable & Sustainable Energy Reviews 15 , 1625-1636 (2011)
[4] Toru Sawada, Norihiro Terada, Sadaji Tsuge, Toshiaki Baba, Tsuyoshi Takahama, Shinya Tsuda and Shoichi Nakano, “High-efficiency a-Si/c-Si heterojunction solar cell,”IEEE Photovoltaic Specialists Conference (1994)
[5] Hitoshi Sakata and Makoto Tanaka, “Sanyo’s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business,” IEEE 4th World Conference (2006)
[6] Jens D. Moschner, Jan Schmidt, and Rudolf Hezel,“Surface recombination velocity measurements at the silicon–silicon dioxide interface by microwavedetected photoconductance decay,” J. Appl. Phys. 76, 363 (1994)
[7] A.W Stephens, A. G. Aberle, and M. A. Green,”Thermo-catalytic deposition of silicon nitride - a new method for excellent silicon surface passivation,” Photovoltaic Specialists Conference(2002)
[8] Nicholas Ewen Grant and Keith R. McIntosh, “Low Surface Recombination Velocity on (100) Silicon by Electrochemically Grown Silicon Dioxide Annealed at Low Temperature,” IEEE ELECTRON DEVICE LETTERS 31,(2010)
[9] R.E.I. Schropp , C.H.M. van der Werf, V. Verlaan, J.K. Rath, H. Li, “Ultrafast deposition of silicon nitride and semiconductor silicon thin films by Hot Wire Chemical Vapor Deposition,” Thin Solid Films 517,3039(2008)
[10] Yasufumi Tsunomura, Yukihiro Yoshimine, Mikio Taguchi, Toshiaki Baba, Toshihiro Kinoshita,Hiroshi Kanno, Hitoshi Sakata, Eiji Maruyama, Makoto Tanaka, “Twenty-two percent efficiency HIT solar cell,” Solar Energy Materials & Solar Cells 93, 670–673 (2009)
[11] Bhumika Chhabra, Sefik Suzer, Robert L. Opila, Christiana B. Honsberg, “Electrical and chemical characterization of chemically passivated silicon surfaces,” PVSC,(2008) 33rd IEEE
[12] Bhumika Chhabra, Christiana B. Honsberg, Robert L. Opila , “High open circuit voltages on ≪ 50 micron silicon substrates by amorphous-silicon (a-Si) and quinhydrone-methanol (QHY-ME) passivation, ” PVSC, (2009) 34th IEEE
[13] Bhumika Chhabra, Stuart Bowden, Robert L. Opila, and Christiana B. Honsberg, “ High effective minority carrier lifetime on silicon substrates using quinhydrone-methanol passivation,” APPLIED PHYSICS LETTERS 96, 063502 (2010)
[14] Bhumika Chhabra, Conan Weiland, Robert L. Opila, and Christiana B. Honsberg, “Surface characterization of quinhydrone–methanol and iodine–methanol passivated silicon substrates using X-ray photoelectron spectroscopy,” Phys. Status Solidi A 208, 86–90 (2011)
[15] H. Schlangenotto, H. Maeder, W. Gerlach, “Temperature dependence of the radiative recombination coefficient in silicon, ” physica status solidi (a) 21, 357-367 (1974)
[16] Dziewior, J.; Schmid, W. ,“Auger coefficients for highly doped and highly excited silicon,” Applied Physics Letters 31, 346 (1977)
[17] Kerr, Mark J.; Cuevas, Andres ,“General parameterization of Auger recombination in crystalline silicon,” Journal of Applied Physics 91, 2473-2480 (2002)
[18] W. Shockley and W. T. Read, Jr. ,“Statistics of the Recombinations of Holes and Electrons,” Phys. Rev. 87, 835–842 (1952)
[19] R. N. Hall,“Electron-Hole Recombination in Germanium,” Phys. Rev. 87, 387–387 (1952)
[20] I. Martín, a M. Vetter, M. Garín, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla, “Crystalline silicon surface passivation with amorphous SiCx:H films deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 98, 114912 (2005)
[21] Stefan Dauwe, “Low-temperature Surface Passivation of Crystalline Silicon and Its Application to the Rear Side of Solar Cells(2004)
[22] Ronald A. Sinton, Andres Cuevas, “Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data,” Appl. Phys. Lett. 69 ,2510-2512 (1996)
[23] Henning Nagel, Christopher Berge, “Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors,” J. Appl. Phys. 86, 6218-6221 (1999)
[24] G. E. Jellison, Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371 (1996)