| 研究生: |
許祐庭 Yu-Ting Hsu |
|---|---|
| 論文名稱: |
利用電化學、掃描式穿隧電子顯微鏡及表面增強紅外光譜探討抗一氧化碳毒化之Pt3Co(111)電極對氫氣氧化反應的催化活性 |
| 指導教授: | 姚學麟 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 穿隧式掃描電子顯微鏡 、一氧化碳毒化 、鉑三鈷(111)電極 、氫氣氧化反應 |
| 外文關鍵詞: | Pt3Co(111) |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鉑已是廣泛應用的催化劑和電催化劑,但是單金屬鉑在催化和電催化過程中容易失去活性或被反應的中間產物所佔據導致中毒。其中一氧化碳(CO)是一明顯的範例,CO會吸附在鉑的表面,可能佔據其活性位置,阻斷原本可發生反應的途徑,這種現象稱為”CO毒化”(Carbon monoxide poisoning),開發一可抗CO毒化的陽極催化劑關係到燃料電池的效率,對未來的能源發展具一定的重要性。
本研究以雙金屬合金Pt3Co(111)電極為出發點,在以光電子光譜(XPS)與射線繞射(XRD)確認其化學成分及晶格排列,並藉由掃描式穿隧電子顯微鏡觀察其表面結構後,探討其對抗CO毒化及催化氫氣氧化之特性。
與Pt(111)電極相比,單層一氧化碳在Pt3Co(111)電極上,氧化剝除的主峰向負偏移約0.06 V,此氧化波的電量只有240 C/cm2,相對於Pt(111)電極的360 C/cm2 明顯低很多,意味者吸附之CO分子並未完全覆蓋Pt3Co(111)電極。此一結果也和在-0.25和0.05 V間仍然有氫原子(Hupd)吸附在Pt3Co(111)的現象一致。Hupd會影響氫氧化反應電流,與純Pt(111)相比,Pt3Co(111)電極氫之氧化電流,於移除Hupd後驟升。
STM結果顯示Pt3Co(111)電極表面有寬廣之平台與單原子台階,在平台上發現一氧化碳吸附形成之c(4 x 2)結構,其覆蓋度為0.5(CO/Pt),低於Pt(111)的0.75,這和上述的電化學結果相呼應。此外表面反射紅外光譜結果表明,電極內層鈷元素影響鉑表面吸附一氧化碳之強度及吸附量。
Pt3Co(111)電極上氧氣還原反應,根據 Koutecký–Levich 方程式計算的結果,轉移電子數為3.975,推測氧氣主要經由4電子途徑還原為水。對甲醇氧化反應而言,Pt3Co(111)電極,產生兩倍於Pt(111)氧化電流,此一活性可歸功於CO高容忍度。
In recent years, platinum (Pt) has been widely used as a catalyst and electrocatalyst. However, monometallic platinum is easily deactivated or poisoned during electrocatalytic processes. Among them, carbon monoxide (CO) is an obvious example. CO will adsorb on the surface of platinum, which probably occupy its active position and block the original path that could react. This phenomenon is called "CO poisoning". An anode catalyst that is resistant to CO poisoning is related to the efficiency of the fuel cell and has significant importance for future energy development.
This study is based on the bimetallic alloy Pt3Co(111) electrode, and its chemical composition and lattice arrangement are confirmed by photoelectron spectroscopy (XPS) and ray diffraction (XRD). After observing its surface structure with a scanning tunneling microscope (STM), we explore its ability of CO tolerance and electrochemical characteristics of catalytic hydrogen oxidation.
Compared with the Pt(111) electrode, the main peak of the single-layer carbon monoxide stripping on the Pt3Co(111) electrode shifted negatively by 0.06 V, and the charge of this oxidation wave is only 240 C/cm2, which is much lower than the 360 C/cm2 of the Pt(111) electrode. It means that adsorbed CO molecules do not completely cover the Pt3Co(111) electrode. This result is also consistent with the phenomenon that hydrogen atoms (Hupd) are still adsorbed on Pt3Co(111) between -0.25 and 0.05 V. Furthermore, Hupd will also affect the hydrogenation reaction current. Compared with Pt(111), the hydrogen oxidation current of the Pt3Co(111) electrode increases rapidly after removing Hupd.
STM results revealed that the surface of the Pt3Co(111) electrode is composed of broad terraces and monoatomic steps. c(4 x 2) structure formed by carbon monoxide adsorption was found on the platform, and its coverage was 0.5 (CO/Pt) lower than 0.75 of Pt(111), which is consistent with the above electrochemical results. In addition, Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS) results indicate that cobalt element in the inner layer of the electrode affects the strength and amount of carbon monoxide adsorbed on the platinum surface.
According to the calculation results of the Koutecký–Levich equation, the number of electrons transferred in the oxygen reduction reaction of the Pt3Co(111) electrode is 3.975, and it is speculated that oxygen is mainly reduced to water through the 4-electron pathway.
For the methanol oxidation reaction, the oxidation current generated by the Pt3Co(111) electrode is twice as large as that of Pt(111), and this activity can be attributed to the high tolerance of CO.
1. J. Clavilier.; R. Faure.; G. Guinet.; R. Durand., Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. Journal of the Electrochemical Society 1980, 107, 205-209.
2. Takako Toda.; Hiroshi Igarashi.; Hiroyuki Uchida.; Masahiro Watanabe., Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co. Journal of The Electrochemical Society, 1999, 146, 3750-3756.
3. Hiroshi Igarashi.; Takeshi Fujino.; Yimin Zhu.; Hiroyuki Uchida.; Masahiro Watanabe., CO Tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Physical Chemistry Chemical Physics, 2001, 3, 306-314.
4. Mitsuru Wakisaka.; Yohei Hyuga.; Kiyotaka Abe.; Hiroyuki Uchida.; Masahiro Watanabe., Facile preparation and electrochemical behavior of Pt100−xCox(111) single-crystal electrodes in 0.1 M HClO4. Electrochemistry Communications 2011, 13(4), 317-320.
5. M. Wakisaka.; S. Kobayashi.; S. Morishima.; Y. Hyuga.; D.A. Tryk.; M. Watanabe.; A. Iiyama.; H. Uchid., Unprecedented Dependence of the Oxygen Reduction Activity on Co Content at Pt Skin/Pt–Co(111) Single Crystal Electrodes. Electrochemistry Communications 2016, 67, 47-50.
6. Shun Kobayashi.; Makoto Aoki.; Mitsuru Wakisaka.; Teppei Kawamoto.; Ryo Shirasaka.; Kohei Suda.; Donald A. Tryk.; Junji Inukai.; Toshihiro Kondo.; Hiroyuki Uchida., Atomically Flat Pt Skin and Striking Enrichment of Co in Underlying Alloy at Pt3Co(111) Single Crystal with Unprecedented Activity for the Oxygen Reduction Reaction. ACS Omega 2018, 3(1), 154−158.
7. K. Duckers.; H.P. Bonzel.; D.A. Wesner., Surface core level shifts of Pt(111) measured with Y Mχ radiation (132.3 eV). Surface Science 1986, 166(1), 141-158.
8. Mark C. Biesingera.; Brad P. Paynec., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science 2011, 257(7), 2717–2730.
9. Shirlaine Koh.; Michael F. Toney.; Peter Strasser., Activity–stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). Electrochimica Acta 2007, 52(8), 2765–2774.
10. Mitsuru Wakisaka,; Shoya Morishima,; Yohei Hyuga,; Hiroyuki Uchida,; Masahiro Watanabe., Electrochemical behavior of Pt–Co(111), (100) and (110) alloy single-crystal electrodes in 0.1 M HClO4 and 0.05 M H2SO4 solution as a function of Co content. Electrochemistry Communications 2012, 18, 55–57.
11. VojislavR.Stamenkovic,; BenFowler,; BongjinSimonMun,; GuofengWang,; PhilipN.Ross,; ChristopherA.Lucas,; NenadM.Markovic., Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science 2007, 315(5811), 493-497.
12. Jon C. Davies.; Brian E. Hayden.; David J. Pegg.; Michael E. Rendall., The electro-oxidation of carbon monoxide on ruthenium modified Pt(111). Surface Science 2002, 496(1), 110-120.
13. Angel Cuesta., The Oxidation of Adsorbed CO on Pt(100) Electrodes in the Pre-peak Region. Electrocatalysis 2010, 1, 7–18.
14. N. M. Markovic.; B. N. Grgur.; P. N. Ross., Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions. The Journal of Physical Chemistry B 1997, 101(27), 5405-5413.
15. Y. Gauthier a.; R. Baudoing-Savois.; J.M. Bugnard.; W. Hebenstreit.; M. Schmid.; P. Varga., Segregation and chemical ordering in the surface layers of Pt25Co75(111): a LEED/STM study. Surface Science 2000, 466, 155–166.
16. Vojislav R. Stamenkovic.; Ben Fowler.; Bongjin Simon Mun.; Guofeng Wang.; Philip N. Ross.; Christopher A. Lucas.; Nenad M. Markovic., Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science 2007, 315(5811), 493-497.
17. María Escudero-Escribano.; Paolo Malacrida.; Martin H. Hansen.; Ulrik G. Vej-Hansen.; Amado Velázquez-Palenzuela.; Vladimir Tripkovic.; Jakob Schiøtz,1,3 Jan Rossmeisl.; Ifan E. L. Stephens.; Ib Chorkendorff1., Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352(6281), 73-76.
18. Li-Jun Wan.; Takahiko Moriyama.; Megumi Ito.; Hiroyuki Uchidab.; Masahiro Watanabe., In situ STM imaging of surface dissolution and rearrangement of a Pt–Fe alloy electrocatalyst in electrolyte solution. Chem.Commun 2002, 1, 58-59.
19. Hyun Jin Yang,; Taketoshi Minato,; Maki Kawai,; and Yousoo Kim., STM Investigation of CO Ordering on Pt(111): From an Isolated Molecule to High-Coverage Superstructures. The Journal of Physical Chemistry C 2013, 117(32), 16429-16437.
20. Si-Chung Chan.; Lam-Wing H. Leung.; and Michael J. Weaver., Comparisons between Coverage-Dependent Infrared Frequencies for Carbon Monoxide Adsorbed on Ordered Pt(111), Pt(100), and Pt(110) in Electrochemical and Ultrahlgh-Vacuum Environments. The Journal of Physical Chemistry C 1989, 98, 5341-5345.
21. Hongzhou Yang.; Jun Zhang.; Kai Sun.; Shouzhong Zou.; and Jiye Fang., Enhancing by Weakening: Electrooxidation of Methanol on Pt3Co and Pt Nanocubes. Angew Chem 2010, 122(38), 7000–7003.
22. E. Herrero.; K. Franaszczuk.; A. Wieckowski., Electrochemistry of Methanol at Low Index Crystal Planes of Platinum: An Integrated Voltammetric and Chronoamperometric Study. The Journal of Physical Chemistry C 1994, 98, 5074-5083.