| 研究生: |
許淯傑 Yu-Chieh Hsu |
|---|---|
| 論文名稱: |
空時區塊編碼之空間調變的解碼演算法 Decoding Algorithms for Space-Time Block Coded Spatial Modulation |
| 指導教授: |
魏瑞益
Ruey-Yi Wei |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 空時區塊編碼 、空間調變 、時間排列 、空時排列 |
| 外文關鍵詞: | STBC, SM, TP-DAB, JSTP |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
空時區塊編碼的空間調變(STBC-SM)不僅透過以發射天線索引來傳送額外的資料位元,還能提供發射端的多樣性增益。最近,有一種提升頻譜效率的新穎 STBC-SM技術,稱為不同累積區塊中的時間排列(TP-DAB)。甚且,TP-DAB延伸到空間排列的一種結合空間與時間排列的STBC-SM架構(STBC-SM-JSTP)也剛被提出,它在不犧牲錯誤效能的前提下能更進一步提升頻譜效率,然而,這兩種架構在接收端的解碼都太過複雜。在本篇論文中,我們提出用於TP-DAB和STBC-SM-JSTP的低複雜度解碼演算法,我們先提出了新的TP-DAB最大可能性檢測器,其計算複雜度遠低於以往所有TP-DAB檢測器。在此基礎上,我們進一步探討了TP-DAB的近似最大可能性檢測器,用來處理更多天線的情況,且其錯誤率與最大可能性檢測器的差距不大。接著針對STBC-SM-JSTP,也設計了新的低複雜度最大可能性檢測器,同樣能夠大幅降低解碼端的複雜度。
Space-time block-coded spatial modulation (STBC-SM) not only transmits additional data bits by selecting transmit antenna indices, but also provides transmit diversity gain. Recently, a novel STBC-SM technique known as temporal permutations in distinct accumulated blocks (TP-DAB) has been proposed to enhance spectral efficiency. Furthermore, an extended scheme of TP-DAB that incorporates spatial permutations, referred to as STBC-SM-JSTP, has also been introduced. This architecture further improves spectral efficiency without sacrificing error performance. However, both of these schemes suffer from high decoding complexity at the receiver. In this paper, we propose low-complexity decoding algorithms for TP-DAB and STBC-SM-JSTP. We first present a new maximum-likelihood (ML) detector for TP-DAB, whose computational complexity is significantly lower than that of all previously proposed TP-DAB detectors. Building on this, we further develop a near-ML detector for TP-DAB, which is designed to support systems with a larger number of transmit antennas, while maintaining error performance close to that of the ML detector. Finally, for the STBC-SM-JSTP architecture, we also design a new low-complexity ML detector, which similarly achieves substantial reduction in decoding complexity at the receiver.
[1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228-2242, Jul. 2008.
[2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12, no. 8, pp. 545-547, Aug. 2008.
[3] M. Renzo, H. Haas, and P. Grant, “Spatial modulation for multiple-antenna wireless systems: A survey,” IEEE Commun. Mag., vol. 49,no. 12, pp. 182-191, Dec. 2011.
[4] M. Wen, B. Zheng, K. J. Kim, M. Renzo, T. A. Tsiftsis, K.-C. Chen, and N. Al-Dhahir, “A survey on spatial modulation in emerging wireless systems: Research progresses and applications”, IEEE J. Select. Areas Commun., vol. 37, pp. 1949-1972, Sep. 2019.
[5] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
[6] E. Basar, U. Aygolu, E. Panayirci and H. V. Poor, “Space-time block coded spatial modulation,” IEEE Trans. Commun., vol. 59, no. 3, pp. 823-832, Mar. 2011.
[7] X. Li and L. Wang, “High rate space-time block coded spatial modulation with cyclic structure,” IEEE Commun. Lett., vol. 18, no. 4, pp. 532-535, Apr. 2014.
[8] L. Wang, “Stacked Alamouti based spatial modulation,” IEEE Trans. Commun., vol. 67, no. 1, pp.336-349, Jan. 2019.
[9] A. G. Helmy, M. Di Renzo, and N. Al-Dhahir, “Enhanced-reliability cyclic generalized spatial-and-temporal modulation,” IEEE Commun. Lett., vol. 20, no. 12, pp. 2374-2377, Dec. 2016.
[10] L. Wang and Z. Chen, “High-rate spatial modulation transmission scheme with block-orthogonal structure and block-by-block sphere decoding,” IEEE Access, vol. 8, pp. 7032-7039, 2020.
[11] M. T. Le, V. D. Ngo, H. A. Mai, X. N. Tran, and M. Di Renzo, “Spatially modulated orthogonal space-time block codes with nonvanishing determinants,” IEEE Trans. Commun., vol. 62, no. 1, pp. 85-99, Jan. 2014.
[12] M. T. Le, T. D. Nguyen, and V. D. Ngo, “On the combination of double space time transmit diversity with spatial modulation,” IEEE Trans. Wireless Comm., vol. 17, no. 1, pp. 170-181, Jan. 2018.
[13] L. Wang, Z. Chen and X. Wang, “A space-time block coded spatial modulation from (n, k) error correcting code,” IEEE Wireless Commun. Lett., vol. 3, no. 1, pp. 54-57, Feb. 2014.
[14] C. Wu, S. Yang, Y. Xiao and M. Xiao, “Quasi-orthogonal space-time block coded spatial modulation,” IEEE Trans. Commun., vol. 70, no. 12, pp. 7872-7875, Dec. 2022.
[15] X. Zeng, S. Yang, C. Wu and Y. Xiao, “Quasi-orthogonal space-time block coded spatial modulation with reduced decoding complexity,” in Proc. IEEE Conference on Vehicular Technology (VTC2023-fall), 2023.
[16] S. Yang, Y. Xiao and C. Wu, “A class of low-complexity sphere decoding detectors for QOSTBC-SM systems,” IEEE Wireless Commun. Lett., vol. 12, no. 11, pp. 1826-1830, Nov. 2023.
[17] R. Mesleh, S. S. Ikki, and H. M. Aggoune, “Quadrature spatial modulation,” IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2738-2742, Jun. 2015.
[18] L. Wang, Z. Chen, Z. Gong, and M. Wu, “Diversity-achieving quadrature spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 12, pp. 10764-10775, Dec. 2017.
[19] L. Wang and Z. Chen, “Enhanced diversity-achieving quadrature spatial modulation with fast decodability,” IEEE Trans. Veh. Technol., vol. 69, no. 6, pp. 6165-6177, Jun. 2020.
[20] C. Li, L. Wang, and G. Nie, “Quadrature spatial modulation with the fourth order transmit diversity and low-complexity sphere decoding for large-scale MIMO systems”, IEEE Trans. Veh. Technol., vol. 71, no. 8, pp. 8603-8614, Aug. 2022.
[21] R. Y. Wei, C. W. Chang, and Y. F. Cheng, “Temporal permutations in distinct accumulated blocks of space-time block-coded spatial modulation,” IEEE Trans. Veh. Technol., vol. 73, no. 12, pp. 19240-19251, Dec. 2024.
[22] 陳昱霖,“具空時排列之空時區塊編碼的空間調變”國立中央大學通訊工程研究所,碩士論文,七月.2024.