跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王靖仁
Jing-Ren Wang
論文名稱: 碲與銻在銀(111)/白雲母表面的成長
指導教授: 陸大安
Dah-An Luh
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 52
中文關鍵詞: 銀(111)電子束物理氣相沉積
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將探討碲和銻在銀(111)表面上,控制蒸鍍時間及退火溫度,其表面重構的變化。我們在超高真空的環境,在室溫下使用電子束物理氣相沉積(Electron-Beam Physical Vapor Deposition, EB-PVD)的方式將碲和銻鍍至生長在新鮮劈裂的白雲母的銀(111)上,並利用低能電子繞射(Low-Energy Electron Diffraction, LEED)和歐傑電子能譜儀(Auger Electron Spectroscopy, AES)來研究其表面的結構變化和元素成分變化。在單獨蒸鍍碲的實驗中,碲在銀(111)表面形成了碲化銀(AgTe)的結構,在碲化銀覆蓋率約1/3 ML時透過低能電子繞射觀測到最清晰的(√3×√3)R30°繞射結構,而在碲化銀覆蓋率略大於1/3 ML時,原有的(√3×√3)R30°繞射點變得模糊且出現一組額外內部三重對稱的繞射點。在碲和銻共鍍的實驗中,透過歐傑電子能譜儀發現表面上幾乎只有來自碲的訊號,僅有非常小的來自銻的訊號,同時在低能電子繞射的量測也只表現出如蒸鍍碲的結構變化。而當對此樣品進行一次的濺射清潔與退火後,則會發現大量的銻訊號出現在表面,推測是共鍍後銻在表面上形成了三維的簇狀結構。


    We have investigated the surface reconstruction of Te and Sb on Ag(111) with varied deposition time and annealing temperature. We used electron-beam physical vapor deposition (EBPVD) to deposit Te and Sb on the Ag(111) film grown on freshly cleaved mica. The surface reconstructions and elemental compositions of the surface were characterized with Low-Energy Electron Diffraction (LEED) and Auger Electron Spectroscopy (AES). When Te was deposited on Ag(111), AgTe was formed, and the sharpest (√3×√3)R30° reconstruction was observed at 1/3 ML of coverage. The spots became blurred and an additional set of internal triple symmetrical spots appears. In the experiments with Te and Sb co-deposition, it was found that the Auger signal on the surface was almost exclusively from Te with only a very small signal from Sb, and the measurement of LEED showed the same reconstruction as in the case of the Te deposition. After sputtering and annealing the sample, a large Sb signal was found on the surface, suggesting that a three-dimensional Sb clusters were formed after Te and Sb co-deposition.

    第一章 簡介 1 第二章 文獻探討 2 2.1 銀在白雲母上的研究 2 2.2 使用銀(111)作為各式二維材料成長基板之可能性 3 2.3 二維過渡金屬硫屬化物研究 4 2.4 單層蜂窩狀碲化銀研究 5 2.5 銻在銀(111)上成長之研究 6 2.6 碲化銻薄膜的分子束磊晶成長之研究 7 第三章 實驗儀器與原理 17 3.1 簡介 17 3.2 超高真空 17 3.3 機械式幫浦 18 3.4 渦輪分子幫浦 18 3.5 離子幫浦 19 3.6 鈦昇華幫浦 19 3.7 離子濺射清潔與退火 19 3.8 電子束蒸鍍 20 3.9 低能電子繞射 21 3.10 歐傑電子能譜儀 22 第四章 結果與討論 29 4.1 樣品製備 29 4.2 碲在銀(111)上的成長 29 4.3 碲化銀薄膜在暴露大氣後的結構變化及還原 30 4.4 銻在銀(111)上的成長 31 4.5 碲與銻在銀(111)上的共鍍 32 4.6 討論 32 第五章 結論 43 參考資料 44

    [l] B. Voigtlander and A. Zinner, Influence of surfactants on the growth-kinetics of Si on Si(111), Surf. Sci. Lett. 292 (1993) L775.
    [2] D.-A. Luh, C.-W. Liu, C.-M. Cheng, K.-D. Tsuei, C.-H. Wang,Y.-W. Yang, Single-crystalline silver films on mica, Thin Solid Films 645 (2018) 215–221
    [3] C. Kato, Y. Aoki, H. Hirayama, Scanning tunneling microscopy of Bi-induced Ag
    (111) surface structures, Phys. Rev. B 82 (2010) 165407.
    [4] K.H.L. Zhang, I.M. McLeod, Y.H. Lu, V.R. Dhanak, A. Matilainen, M. Lahti, K. Pussi,
    R.G. Egdell, X.-S. Wang, A.T.S. Wee, W. Chen, Observation of a surface alloying-to-
    dealloying transition during growth of Bi on Ag(111), Phys. Rev. B 83 (2011) 235418.
    [5] R. Arafune, C.-L. Lin, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi, M. Kawai, Structural transition of silicene on Ag(111), Surf. Sci. 608(2013) 297-300
    [6] C.-H. Lin, A Huang, W.-W. Pai, W.-C. Chen, T.-Y. Chen, T.-R. Chang, R. Yukawa, C.-M. Cheng, C.-Y. Mou, I. Matsuda, T.-C. Chiang, H.-T. Jeng, and S.-J. Tang, Single-layer dual germanene phases on Ag(111), Phys. Rev. Materials 2 (2018) 024003
    [7] L. He, X. Kou, and K.-L. Wang, Review of 3D topological insulator thin-film growth by molecular beam epitaxy and potential applications, Phys. Status Solidi, No. 1–2 (2013) 50–63.
    [8] S. Das, P. Singha, V.A. Kulbachinskii, V.G. Kytin, G. Das, S. Janaky, A.K. Deb, S. Mukherjee, A. Maignan, S. Hebert, R. Daou, C. Narayana, S. Bandyopadhyay, A. Banerjee, Sb2Te3/ graphite nanocomposite: A comprehensive study of thermal conductivity, J. Materiomics 7 (2021) 545-555
    [9] L. Gao, J.-T. Sun, J.-C. Lu, H. Li, K. Qian, S. Zhang, Y.-Y. Zhang,T. Qian, H. Ding, X. Lin, S. Du, and H.-J. Gao, Epitaxial growth of honeycomb monolayer CuSe with dirac nodal line fermions, Adv. Mater. (2018) 1707055
    [10] B. Liu, J. Liu, G. Miao, S. Xue, S. Zhang, L. Li, X. Huang, X. Zhu, S. Meng, J. Guo, M. Liu and W. Wang, Flat AgTe honeycomb monolayer on Ag(111), J. Phys. Chem. Lett. (2019) 1866−1871
    [11] L. Dong, A. Wang, E. Li, Q. Wang, G. Li, Q. Huan, H.-J. Gao, Formation of two-timensional AgTe monolayer atomic crystal on Ag(111) substrate, Chin. Phys. Lett. (2019) 028102
    [12] T.C.Q. Noakes, D.A. Hutt, C.F. Mcconville, Adsorption of Sb on Ag(111) studied using LEED, AES and XPS, Surf. Sci. 307–309 (1994) 101–106
    [13] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3 Phys. Rev. Lett. 103 (2009) 146401
    [14] Z. Aabdin, N. Peranio, M. Winkler, D. Bessas, J. König, R. P. Hermann, H. Böttner and O. Eibl, Sb2Te3 and Bi2Te3 thin films grown by room-temperature MBE. J. Electron. Mater. 41 (2012) 1493–1497

    QR CODE
    :::