跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝東霖
Tung-Lin Hsieh
論文名稱: 具複合結構的奈米圓錐陣列製程及氮化鋁鎵電晶體應用為 高訊噪 光檢測器之技術開發
Development of Composite Nanocone Array Fabrication and the Application of AlGaN Transistors in High Signal to Noise Ratio Photodetectors
指導教授: 賴坤佑
Kun-Yu Lai
張允崇
Yun-Chorng Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 71
中文關鍵詞: 奈米球鏡微影
外文關鍵詞: Nanosphere-Lens Lithography
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本學位論文分為兩個部分:
    第一部分為採用低成本的奈米製程技術製作大面積之奈米金屬元件。我們首先利用奈米球鏡微影術(NLL)於光阻層上製作出週期性排列的奈米孔洞陣列,接著在奈米孔洞內部進行熱蒸鍍,依序沉積二氧化矽(SiO₂)與金(Au),形成具結構性之金屬奈米顆粒。藉由調整奈米球的尺寸、曝光時間與蒸鍍厚度等製程條件,可有效控制金屬奈米結構的尺寸與週期。最後透過散射光光譜的量測,分析不同尺寸的奈米金屬結構在光學性質上的差異,特別是其局部表面電漿共振(Localized Surface Plasmon Resonance, LSPR)特性之變化。
    第二部分則建立一套以儀表放大器(INA121P)搭配鎖相放大器(SR830)所構成的差動電性量測系統,應用於量測AlGaN/GaN高電子遷移率電晶體(HEMT)中無閘極結構的光效應行為。實驗中透過施加光照於感測區,觀察其對源極與汲極間電流之影響,以評估光照對元件表面態與通道載子濃度的改變效應。本研究比較差動量測與傳統單端量測在訊號增益與可偵測最小光照變化的極限值上的差異。特別針對過去使用長波長雷射時無法觀測的微弱光效應,本研究驗證在差動量測條件下是否能成功捕捉到這些微小訊號,並評估其作為高訊噪光感測平台的潛力。


    This thesis is divided into two parts:
    The first part focuses on the fabrication of large-area nanostructured metallic devices using low-cost nanofabrication techniques. We first employed Nanosphere-Lens Lithography (NLL) to create a periodic array of nanoholes in the photoresist layer. Subsequent thermal evaporation was used to sequentially deposit silicon dioxide (SiO₂) and gold (Au) into the nanoholes, forming well-defined metallic nanoparticles. By adjusting fabrication parameters such as the size of the nanospheres, exposure time, and deposition thickness, the size and periodicity of the metallic nanostructures can be effectively controlled. Finally, optical scattering spectra were measured to analyze the differences in optical properties among nanoparticles of various sizes, particularly the variations in localized surface plasmon resonance (LSPR) characteristics.
    The second part involves the development of a differential electrical measurement system composed of an instrumentation amplifier (INA121P) and a lock-in amplifier (SR830), which is applied to study the photoresponse behavior of gateless AlGaN/GaN high electron mobility transistors (HEMTs). In the experiments, light was illuminated onto the sensing region to observe changes in the current between the source and drain, aiming to evaluate the effects of photo-induced surface state modulation and the resulting variations in channel carrier concentration. This study compares differential measurements with conventional single-ended measurements in terms of signal amplification and the minimum detectable light-induced signal. In particular, it investigates whether weak photoresponses—previously undetectable under long-wavelength laser illumination—can be successfully captured using the differential measurement setup, thereby demonstrating its potential as a highly Signal-to-Noise Ratio optical sensing platform.

    目錄 第一章 序論 1 1.1 研究動機 2 1.1.1 奈米球微影製程 3 1.1.2 差動輸入鎖相放大技術應用電性量測之研究 3 1.2 研究背景 4 1.2.1 高電子遷移率場效電晶體簡介 4 1.2.2 二維電子氣(2-Dimensional Electron Gas, 2DEG) 5 1.2.3 金屬-半導體接面(Metal-Semiconductor Junction) 5 1.2.4 AlGaN/GaN HEMT 在感測應用之機制 6 1.2.5 Lock-in Amplifier及差動放大原理 7 1.3 奈米球鏡微影術(Nanospherical-Lens Lighography, NLL) 10 1.3.1 奈米球自組裝排列現象 10 1.3.1 奈米球自組裝排列裝置 11 1.3.1 奈米球鏡微影術原理及應用 12 1.4 奈米結構的面面電漿共振 14 1.4.1 表面電漿共振(Surface Plasmon Resonance, SPR) 14 1.4.2 侷域性面面電漿共振(Localized Surface Plasmon Resonance, SPR) 15 1.4.3 散射光譜(Scattering Spectrum) 17 第二章 製程與量測儀器 19 2.1 製程儀器 19 2.1.1 奈米球自組裝裝置 19 2.1.2 汞氙燈曝光系統 20 2.1.3 氧電漿蝕刻機 21 2.1.4 高真空蒸鍍系統 22 2.2 量測儀器 23 2.2.1 場發射掃描式電子顯微鏡 23 2.2.2 暗場顯微鏡 24 2.2.3 鎖相放大器 25 2.2.4 量測系統 26 2.2.4 單顆粒差分散射光譜學(Single-particle Differential Scattering Spectroscopy, DFS 27 第三章 奈米金球陣列結構製作分析 28 3.1 奈米孔洞陣列 28 3.1.1 奈米孔洞陣列製程步驟及分析 28 3.1.2 奈米孔洞陣列 31 3.2 奈米金球陣列結構 32 3.2.1 奈米金球陣列製程步驟 32 3.2.2 縮孔效應 33 3.2.2 奈米金顆粒製作及控制 34 3.3 光學顯微鏡下奈米金顆粒陣列 36 3.3.1 暗場顯微鏡觀看奈米金顆粒陣列散射光 36 3.4 奈米金顆粒的散色光譜 37 3.3.1 奈米金顆粒的散色光譜分析 37 第四章 元件光效應感測實驗 40 4.1 AlGaN/GaN HEMT 元件製程與直流電性量測與分析 40 4.1.1 元件源極-汲極歐姆接觸 40 4.1.2 元件接觸電阻量測 41 4.1.3 元霍爾量測 42 4.2 電性量測系統介紹與量測分析 43 4.2.1 電性量測系統與實驗步驟介紹 43 4.2.2 電性量測分析 44 4.2.3 單端量測 46 4.2.4 差動量測 50 4.2.5 線性校正曲線 53 第五章 結論與未來展望 55 5.1 結論 55 5.2 未來展望 56

    1. Bhat, A. M., Poonia, R., Varghese, A., Shafi, N., & Periasamy, C. (2023). AlGaN/GaN high electron mobility transistor for various sensing applications: a review. Micro and Nanostructures, 176, 207528.
    2. Denkov, N., Velev, O., Kralchevski, P., Ivanov, I., Yoshimura, H., & Nagayama, K. (1992). Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir, 8(12), 3183-3190.
    3. Ormonde, A. D., Hicks, E. C., Castillo, J., & Van Duyne, R. P. (2004). Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV− visible extinction spectroscopy. Langmuir, 20(16), 6927-6931.
    4. Chang, Y. C., Chung, H. C., Lu, S. C., & Guo, T. F. (2013). A large-scale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor. Nanotechnology, 24(9), 095302.
    5. Wu, W., Katsnelson, A., Memis, O. G., & Mohseni, H. (2007). A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes andnanopillars. Nanotechnology, 18(48), 485302.
    6. Chang, Y. C., Lu, S. C., Chung, H. C., Wang, S. M., Tsai, T. D., & Guo, T. F. (2013). High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography. Scientific reports, 3(1), 3339.
    7. Zayats, A. V., Smolyaninov, I. I., & Maradudin, A. A. (2005). Nano-optics of surface plasmon polaritons. Physics reports, 408(3-4), 131-314.
    8. 邱國斌、蔡定平, 金屬表面電漿簡介. 物理雙月刊2006, 28(2), 472-482
    9. Bhat, A. M., Poonia, R., Varghese, A., Shafi, N., & Periasamy, C. (2023). AlGaN/GaN high electron mobility transistor for various sensing applications: a review. Micro and Nanostructures, 176, 207528.
    10. Murayama, H., Akiyama, Y., Niwa, R., Sakashita, H., Kachi, T., Sugimoto, M., & Sakaki, H. (2013, December). Persistent photoconductivity in AlGaN/GaN heterojunction channels caused by the ionization of deep levels in the AlGaN barrier layer. In AIP Conference Proceedings (Vol. 1566, No. 1, pp. 81-82). American Institute of Physics.
    11. Chang, Y. C., Li, Y. L., Lin, T. H., & Sheu, J. K. (2007). Variations of channel conductance in AlGaN/GaN structure with sub-bandgap laser light and above-bandgap illuminations. Japanese journal of applied physics, 46(6R), 3382.
    12. Chang, Y. C. (2010). Effects of illumination on the excess carrier dynamics and variations of the surface states in an AlGaN/GaN heterostructure. Journal of Applied Physics, 107(3).

    QR CODE
    :::