跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴武德
Wu-Te Lai
論文名稱: 台灣西部河川砂石及北部地區安山岩之鹼-骨材反應潛能研究
Study on alkali-aggregate reaction in Western Taiwan rivers and Northern Taiwan andesites
指導教授: 陳維民
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
畢業學年度: 89
語文別: 中文
論文頁數: 169
中文關鍵詞: 安山岩鹼-骨材反應台灣西部河川北部地區安山岩膨脹量
外文關鍵詞: andesite, alkali-aggregate reaction, Western Taiwan rivers, Northern Taiwan andesites, expansion
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 根據ASTM C 227和ASTM C 289的試驗結果,台灣西部河川砂石皆不具有危害性;而在ASTM C 1260中卻指其為危害性骨材,復進一步使用較符合現地建築物配比的試驗方法-ASTM C 1293,其結果顯示只有大安溪、大甲溪以及濁水溪的砂石是具有危害性的。
    在北部地區安山岩方面,在ASTM C 227 和ASTM C 1293試驗中,在低鹼含量(1.2% Na2Oeq.)時,安山岩並不具有危害性;而在高鹼含量(1.5%及2.0% Na2Oeq.)時,便有鹼-骨材反應發生,所以北部地區安山岩在高鹼含量下,是具有反應性的。
    比較ASTM C 1260和ASTM C 1293的試驗結果,當混凝土角柱中鹼含量較低時,兩者所得結果並不一致,而當混凝土角柱中鹼含量增加至某一程度時,兩種試驗方法所得的結果便能一致,在ASTM C 227和ASTM C 1260的試驗結果比較,也是具有相同的情況。
    在北部地區安山岩悲極效應(pessimum effect)研究中顯示,在低鹼含量時,悲極效應並不會發生,當鹼含量增加至某一程度時,悲極效應才會產生。北部地區安山岩的悲極比例介於40%∼60%,且其悲極比例(pessimum proportion)有隨者鹼含量的增加而增加的趨勢。



    The results of ASTM C227 and ASTM C289 tests showed that the aggregates in the Western Taiwan rivers were innocuous. Furthermore in ASTM C1260 test,they were all classed as deleterious .The results of ASTM C1293 test showed that they were innocuous except the aggregates from Dah-An river, Dah-Chia river and Zuo-Sweh rivers.
    The results of ASTM C227 and ASTM C1293 showed that the Northern Taiwan andesites were innocuous,when the alkali content was in the level of 1.2%(Na2Oeq.). But the alkali content in the two levels of 1.5% and 2%(Na2Oeq.), the alkali-aggregate reaction happened. So the Northern Taiwan andesites will be deleterious in high alkali content.
    Compare ASTM C1260 results with ASTM C1293 results, we can find the results of these two tests will be identical in high alkali content. The results of ASTM C227 agreed with ASTM C1260 in high alkali content.
    The results of the pessimum effect of Northern Taiwan andesites were non-available, when in low alkali content. When keeping increasing the alkali content, the pessimum effect was happened. The pessimum proportion of Northern Taiwan andesites was between 40% and 60%.The pessimum proportion was increased when the alkali content was increased.

    目 錄 頁數 摘要Ⅰ 誌謝Ⅱ 目錄Ⅲ 圖目錄Ⅶ 表目錄ⅩⅠ 圖版目錄ⅩⅡ 第一章 緒論1 1-1 研究動機與目的1 1-2 研究方法4 1-3 研究範圍4 第二章 文獻回顧12 2-1 鹼-骨材反應概論12 2-2 鹼-骨材反應之分類12 2-2-1 鹼-氧化矽反應(ASR)13 2-2-2 鹼-矽酸鹽反應13 2-2-3 鹼-碳酸鹽反應(ACR)14 2-3 鹼-氧化矽反應15 2-3-1 鹼-氧化矽反應之化學機制15 2-3-2 鹼-氧化矽反應的產物17 2-3-3 反應圈19 2-4 鹼-氧化矽的礦物及岩石21 2-5 鹼-骨材反應的症狀25 2-5-1 外觀方面25 2-5-2 內部方面26 2-6 影響鹼-骨材反應的因素28 2-6-1 反應性骨材的影響28 2-6-2 鹼的影響30 2-6-3 濕度的影響32 2-6-4 水灰比的影響33 2-6-5 溫度的影響34 2-6-6 環境的影響34 2-7 悲極效應(pessimum effect)35 2-8 影響悲極效應的因素35 2-8-1 反應性骨材含量及鹼含量36 2-8-2 骨材粒徑的影響37 2-9 鹼-骨材反應試驗方法討論38 2-9-1 化學分析試驗(ASTM C289)40 2-9-2 水泥砂漿棒試驗 (ASTM C227)40 2-9-3 水泥砂漿棒加速試驗 (ASTM C1260)41 2-9-4 混凝土角柱試驗(ASTM C1293)42 2-10 抑制鹼-骨材反應的方法43 第三章 實驗計劃與方法46 3-1 實驗規劃46 3-2 實驗材料48 3-3 實驗方法及步驟49 3-3-1 骨材反應潛能之化學分析試驗(ASTM C289 Chemical test)49 3-3-1-1 儀器與試劑49 3-3-1-2 試驗步驟50 3-3-2 鹼-骨材反應潛能之水泥砂漿棒試驗(ASTM C227 Mortar bar test)56 3-3-2-1 儀器與條件56 3-3-2-2 試驗步驟57 3-3-3 鹼-骨材反應潛能之水泥砂漿棒加速試驗(ASTM C1260 Accelerated mortar bar test)60 3-3-3-1 儀器與條件60 3-3-3-2試驗步驟60 3-3-4 混凝土角柱試驗(ASTM C1293 Concrete prism test )62 3-3-4-1 試驗步驟62 3-3-4-2 ASTM C1293試驗相關規定63 3-3-5 醋酸鈾螢光試驗(uranyl acetate fluorescence test)66 3-3-5-1 設備及材料準備66 第四章 實驗結果及分析68 4-1 台灣西部河川砂石之鹼-骨材反應潛能試驗結果...68 4-1-1 骨材反應潛能之化學分析試驗(ASTM C289)68 4-1-2 水泥砂漿棒試驗(ASTM C227)72 4-1-3 水泥砂漿棒加速反應試驗(ASTM C1260)77 4-1-4 混凝土角柱試驗(ASTM C1293)80 4-1-5 綜合討論80 4-2北部地區(基隆山、大屯山、觀音山)之安山岩85 4-2-1 骨材反應潛能之化學分析試驗(ASTM C289)85 4-2-2 水泥砂漿棒之鹼-骨材反應潛能試驗(ASTM C227)85 4-2-3 水泥砂漿棒加速試驗(ASTM C1260)94 4-2-4 混凝土角柱試驗(ASTM C1293)96 4-2-5 綜合討論104 4-3反應性岩種的悲極效應(pessimum effect)探討106 4-3-1 基隆山石英安山岩(KL1)106 4-3-2 觀音山兩輝石安山岩(KY1)110 4-3-3 觀音山角閃石紫蘇輝石安山岩(KY2)114 4-3-4 觀音山普通輝石安山岩(KY3)114 4-3-5 大屯山兩輝石安山岩(TT1)121 4-3-6 大屯山兩輝石角閃石安山岩(TT4)125 4-4 試驗方法結果討論132 4-4-1 ASTM C227與ASTM C1260之結果比較132 4-4-2 ASTM C1293與ASTM C1260之結果比較136 4-4-3 ASTM C1260危害門勘值探討141 4-5 醋酸鈾螢光試驗(uranyl fluorescence acetate test)148 4-5-1 北部地區安山岩醋酸鈾螢光試驗結果148 第五章 結論與建議154 5-1 結論154 5-2 建議157 參考文獻159 英文摘要168 圖 目 錄 圖1.1 台灣地區八十八年度砂石產量調查5 圖1.2 台灣西部河川砂石採樣地點圖6 圖1.3 觀音山地區安山岩採樣地點圖7 圖1.4 大屯山地區安山岩採樣地點圖8 圖1.5 基隆山地區安山岩採樣地點圖8 圖2.1 鹼-氧化矽反應之微觀示意圖16 圖2.2 塊狀膠體,右為XRD擾射圖17 圖2.3 鹼-氧化矽反應的薔薇狀膠體18 圖2.4 反應膠體成分19 圖2.5 骨材邊緣的反應圈,箭頭所指處為裂縫貫穿骨材現象20 圖2.6 反應圈內離子的變化情形21 圖2.7 鹼-骨材反應侵害的人行道26 圖2.8 微裂縫貫穿骨材27 圖2.9 水泥漿體裂縫中的反應膠體(為圖中G點)27 圖2.10 NaCl對混凝土砂漿棒膨脹量的影響32 圖2.11 不同濕度變化所造成的膨脹差異33 圖2.12 溫度對膨脹量的影響34 圖2.13 燧石和石灰岩含量的悲極效應36 圖2.14 蛋白石的最佳矽/鹼比37 圖2.15 骨材粒徑大小的悲極效應38 圖3.1 實驗流程圖47 圖3.2 預先求出之鹼量曲線圖51 圖3.3 ASTM C289化學法判斷標準圖54 圖3.4 骨材反應潛能之化學分析流程圖(ASTM C289)55 圖3.5 水泥砂漿棒試驗流程圖(ASTM C227)59 圖3.6 水泥砂漿棒加速試驗流程圖(ASTM C1260)64 圖3.7 混凝土角柱試驗流程圖(ASTM C1293)65 圖3.8 醋酸鈾螢光試驗流程圖67 圖4.1 台灣西部河川砂石ASTM C289 化學分析結果70 圖4.2 台灣地區骨材反應潛能分佈圖,利用ASTM C289試驗法 ………………………………………………………………..71 圖4.3 西部河川砂石ASTM C227試驗結果(Na2Oeq.=1.2%)73 圖4.3 西部河川砂石ASTM C227試驗結果(Na2Oeq.=1.2%)(續)74 圖4.4 西部河川砂石ASTM C227試驗結果(Na2Oeq.=2.0%)75 圖4.4 西部河川砂石ASTM C227試驗結果(Na2Oeq.=2.0%)(續)76 圖4.5 西部河川砂石ASTM C1260試驗結果78 圖4.5 西部河川砂石ASTM C1260試驗結果(續)79 圖4.6 西部河川砂石ASTM C1293試驗結果(Na2Oeq.=2.0%).82 圖4.6 西部河川砂石ASTM C1293試驗結果(Na2Oeq.=2.0%)(續).83 圖4.7 北部地區安山岩ASTM C289化學分析結果89 圖4.8 北部地區安山岩ASTM C227試驗結果(Na2Oeq.=1.2%).91 圖4.9 北部地區安山岩ASTM C227試驗結果(Na2Oeq.=1.5%).92 圖4.10 北部地區安山岩ASTM C227試驗結果(Na2Oeq.=2.0%).93 圖4.11 北部地區安山岩ASTM C1260試驗結果.95 圖4.12 北部地區安山岩ASTM C1293試驗結果(Na2Oeq.=1.25%)98 圖4.13 北部地區安山岩ASTM C1293試驗結果(Na2Oeq.=2.0%).99 圖4.14 北部地區安山岩ASTM C1293試驗結果(Na2Oeq.=3.0%).100 圖4.15 基隆山石英安山岩(KL1)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=1.2%).107 圖4.16 基隆山石英安山岩(KL1)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=1.5%).108 圖4.17 基隆山石英安山岩(KL1)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=2.0%).109 圖4.18 觀音山兩輝石英安山岩(KY1)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=1.2%).111 圖4.19 觀音山兩輝石英安山岩(KY1)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=1.5%).112 圖4.20 觀音山兩輝石英安山岩(KY1)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=2.0%).113 圖4.21 觀音山角閃石紫蘇輝石安山岩(KY2)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=1.2%).115 圖4.22 觀音山角閃石紫蘇輝石安山岩(KY2)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=1.5%).116 圖4.23 觀音山角閃石紫蘇輝石安山岩(KY2)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=2.0%).117 圖4.24 觀音山普通輝石安山岩(KY3)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=1.2%).118 圖4.25 觀音山普通輝石安山岩(KY3)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=1.5%).119 圖4.26 觀音山普通輝石安山岩(KY3)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=2.0%).120 圖4.27 大屯山兩輝石安山岩(TT1)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=1.2%).122 圖4.28 大屯山兩輝石安山岩(TT1)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=1.5%).123 圖4.29 大屯山兩輝石安山岩(TT1)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=2.0%).124 圖4.30 大屯山兩輝石角閃石安山岩(TT4)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=1.2%).126 圖4.31 大屯山兩輝石角閃石安山岩(TT4)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=1.5%).127 圖4.32 大屯山兩輝石角閃石安山岩(TT4)含量對膨脹量的關係圖(ASTM C227,Na2Oeq.=2.0%).128 圖4.33 嘉平骨材含量對膨脹量關係圖130 圖4.34 花蓮溪安山岩含量對膨脹量關係圖(ASTM C227,Na2Oeq.=1.2%)130 圖4.35 花蓮溪安山岩含量對膨脹量關係圖(ASTM C227,Na2Oeq.=1.5%)131 圖4.36 花蓮溪安山岩含量對膨脹量關係圖(ASTM C227,Na2Oeq.=2.0%)131 圖4.37 ASTM C227(1.2%Na2Oeq.)與ASTM C1260之綜合比較.134 圖4.38 ASTM C227(2.0%Na2Oeq.)與ASTM C1260之綜合比較.135 圖4.39 西部河川砂石ASTM C1293(2.0%Na2Oeq.)與ASTM C1260之綜合比較137 圖4.40 北部地區安山岩ASTM C1293(1.25%Na2Oeq.)與ASTM C1260之綜合比較138 圖4.41 北部地區安山岩ASTM C1293(2.0%Na2Oeq.)與ASTM C1260之綜合比較139 圖4.42 北部地區安山岩ASTM C1293(3.0%Na2Oeq.)與ASTM C1260之綜合比較140 圖4.43 水泥砂漿棒加速試驗和混凝土角柱試驗相關性ASTM …..143 圖4.44 ASTM C1293與ASTM C1260之綜合比較146 圖4.45 ASTM C227與ASTM C1260之綜合比較147 表 目 錄 表1.1 台灣西部河川砂石採樣點座標10 表1.2 北部地區安山岩採樣點座標11 表2.1 具鹼-骨材反應之岩石分類28 表3.1 試驗用水泥之化學成份48 表3.2 各粒徑骨材之重量百分比56 表3.3 粗骨材要求級配63 表4.1 台灣西部河川砂石ASTM C289化學分析數據(Sc為矽的溶解量,Rc為鹼的消耗量)69 表4.2 台灣西部河川砂石之鹼骨材反應綜合試驗結果84 表4.3 岩石代表名稱88 表4.4 北部地區安山岩ASTM C289化學分析數據(Sc為矽的溶解量,Rc為鹼的消耗量)88 表4.5 北部地區安山岩之鹼-骨材反應綜合試驗結果105 表4.6 晚期膨脹岩石之反應性142 表4.7 骨材危害性與試驗方法之相關性142 圖 版 目 錄 圖版1 基隆山石英安山岩(KL1)86 圖版2 觀音山兩輝石安山岩(KY1)86 圖版3 觀音山角閃石紫蘇輝石安山岩(KY2)86 圖版4 觀音山普通輝石安山岩(KY3)86 圖版5 大屯山兩輝石安山岩(TT1)87 圖版6 大屯山玄武岩岩(TT2)87 圖版7 大屯山紫蘇輝石角閃石安山岩(TT3)87 圖版8 大屯山兩輝石角閃石安山岩(TT4)87 圖版9 混凝土角柱(KY2)上的裂縫101 圖版10 混凝土角柱(TT1)上的裂縫101 圖版11 大屯山兩輝石安山岩(TT1)混凝土角柱101 圖版12 混凝土角柱(TT1)上的裂縫及白色滲出物101 圖版13 混凝土角柱(TT1)上的裂縫及白色滲出物(細部)102 圖版14 大屯山兩輝石角閃石安山岩(TT4)混凝土角柱102 圖版15 混凝土角柱(TT4)上的裂縫及白色滲出物102 圖版16 基隆山石英安山岩(KL1)混凝土角柱裂縫102 圖版17 觀音山兩輝石安山岩(KY1)混凝土角柱上的裂縫103 圖版18 混凝土角柱(KY2)上的裂縫及白色滲出物103 圖版19 TT1試體(紫外光照射前)150 圖版20 TT1試體(紫外光照射後)150 圖版21 TT4試體(紫外光照射前)150 圖版22 TT4試體(紫外光照射後)150 圖版23 KL1試體(紫外光照射前)151 圖版24 KL1試體(紫外光照射後)151 圖版25 KY1試體(紫外光照射前)151 圖版26 KY1試體(紫外光照射後)151 圖版27 KY2試體(紫外光照射前)152 圖版28 KY2試體(紫外光照射後)152 圖版29 TT1試體(紫外光照射前)152 圖版30 TT1試體(紫外光照射後)152 圖版31 KY2試體(紫外光照射前)153 圖版32 KY2試體(紫外光照射後)153

    王櫻茂、吳振成、楊宏儀、田永銘、陳裕新(1989)台灣地區鹼─骨材反應特性之研究:行政院國科會專題研究報告,共98頁。
    王淑慧(1999)台灣地區岩石之鹼─骨材反應潛能研究,國立中央大學應用地質研究所,碩士論文。
    田永銘、楊世和 (1997) 台灣東部反應性骨材之探討及分析:East Asia
    Alkali-Aggregate Seminar, Tottori, Japan, p.13-26
    田永銘、楊世和、彭柏翰、王淑慧(1999)台灣的鹼─骨材反應問題與對策:土木水利,第26卷1期,共16頁。
    田永銘、王淑慧、彭柏翰、賴武德(2000)台灣安山岩質骨材之鹼反應行為:第五屆結構工程研討會,p.643-651
    田永銘、楊世和、王淑慧(2001)台灣東部骨材鹼反應潛能研究:中國土木水利工程學刊,第13卷1期,p.217-651
    台灣省教育廳(1984)大屯火山群及北部濱海地質簡介,p1-18
    何春蓀(1994)台灣地質概論,經濟部中央地質調查所,共164頁
    林晏吉(1999)花東地區鹼─骨材反應之成因探討,國立中央大學土木工程研究所,碩士論文。
    陳仁達(1998)花東地區鹼─骨材反應及防治方法,國立中央大學土木工程研究所,碩士論文。
    黃兆龍,蘇南(1988)台灣北中部主要河川粗骨材微觀結構研究:Chinese Journal of Material Science, vol.20, No.3, p133-143
    國立師範大學地球科學系(1987)台灣北部十條地質實習考察路線沿線地質簡介,p5-17
    楊世和(1997)台灣東部反應性骨材之探討及分析,國立中央大學土木工程研究所,碩士論文。
    張文恭(2000)花蓮地區單一岩種之鹼-骨材反應研究,國立中央大學應用地質所,碩士論文。
    彭柏翰(2000)花蓮溪安山岩含量之悲極效應研究,國立中央大學土木工程所,碩士論文。
    張庭華(2001)海岸山脈安山岩之鹼-骨材反應特性及抑制方法,國立中央大學土木工程所,碩士論文。
    經濟部礦務局 (1999)八十八年度砂土石產銷調查計劃報告,共152頁
    廖肇昌,蕭興臺(1993)混凝土內骨材鹼性反應之特性及其對鋼筋混凝土構件之影響:結構工程,第8卷1期,第25∼40頁。
    褚炳麟,顏聰,盧俊寬(1994)台灣西部地區砂石料源鹼質反應調查研究:交通部台灣區國道新建工程局研究報告,共108頁。
    劉憲德,苟澎生,賴典章(1986)台灣地區陸上砂石資源調查與研究報告第四卷,北部安山岩地區碎石母岩骨材資源,經濟部中央地質調查所,共123頁。
    ASTM C1260-94(1994)Standard Test Method for Potential Alkali Reactivity of Aggregate(Mortar Bar Method), Annual Book of ASTM Standards, p.644-647.
    ASTM C1293-95(1995)Standard Test Method for Concrete Aggregates by Determination of Length Change of Concrete due to Alkali -Silica Reaction, Annual Book of ASTM Standards, p.648-653.
    ASTM C227-90(1990)Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations(Mortar Bar Method), Annual Book of ASTM Standards, p.125-129.
    ASTM C289-94(1994)Standard Test Method for Potential Alkali Reactivity of Aggregate(Chemical Method), Annual Book of ASTM Standards, p.156-162.
    ASTM C295-90(1990)Standard Guide for Petrographic Examination of Aggregate for Concrete, Annual Book of ASTM Standards, Section 4, Vol.04.02.
    Ahrland, S., Grenthe, I., and Noren, B. (1960) Acta. Chem. Scand., 14, p.1059
    Batic, O. R., Sota, J. D., and Iasi R.(1990)Contribution of Alkalies by Aggregates to Alkali Aggregate Reaction in Concrete, Petrography Applied to Concrete and Concrete Aggregates, American Society for Testing and Materials, Philadelphia, p.159-168
    Berube, M. A. and Fournier, B.(1993)Canadian Experience with Testing for Alkali-Aggregate Reactivity in Concrete, Cement, Concrete, and Aggregates, Vol.15, p.27-47.
    Blackwell, B. Q. and Pettifer, K.(1992)Alkali-Reactivity of Greywacke Aggregates in Maentwrog Dam(North Wales), Magazine of Concrete Research, Vol.44, No.161, p.255-264.
    Brouxel, M.(1993)The Alkali-Aggregate Reaction Rim:Na2O, SiO2, K2O and CaO Chemical Distribution, Cement and Concrete Research, Vol.23, No.2, p.309-320.
    Collins, R. J. and Bareham, P. D.(1987)Alkali-Silica Reaction Suppression of Expansion Using Porous Aggregate. Cement and Concrete Research, Vol.17, No.1, p.89-96.
    Concrete Society(1987)Alkali-Silica Reaction:Minimising the Risk of Damage to Concrete. Technical Report No. 30. The Concrete Society, London. Appendix 3.
    Davies, G. and Oberholster, R. E.(1988)Alkali-Silica Reaction Products and Their Development, Cement and Concrete Research, Vol.18, No.4, p.621-635.
    Diamond, S.(1976)A Review of Alkali-Silica Reaction and Expansion Mechanisms —Part 2 :.Reactive Aggregates, Cement and Concrete Research, Vol.6, No.4, p.549-560.
    Duncan, M. A. G., Swenson, E. G., Gillott, J. E., and Foran, M. R.(1973)Alkali-Aggregate Reaction in Nova Scotia:I. Summary of A Five-Year Study, Cement and Concrete Research, Vol.3, No.1, p.55-69.
    Duncan, M. A. G., Gillott, J. E., and Swenson, E. G.(1973)Alkali-Aggregate Reaction in Nova Scotia:II. Field and Petrographic Studies, Cement and Concrete Research, Vol.3, No.1, p.119-128.
    Duncan, M. A. G., Swenson, E. G., and Gillott, J. E.(1973)Alkali-Aggregate Reaction in Nova Scotia:III. Laboratory Studies of Volume Chance, Cement and Concrete Research, Vol.3, No.1, p.233-245.
    Fournier, B. and Berube, M. A.(1991)Application of the NBRI Accelerated Mortar Bar Test to Siliceous Carbonate Aggregates Produced in the St. Lawrence Lowlands(Quebec, Canada). —Part 1:Influence of Various Parameters on the Test Results. Cement and Concrete Research, Vol.21, No.5, p.853-862.
    Fournier, B. and Berube, M. A.(1991)Application of the NBRI Accelerated Mortar Bar Test to Siliceous Carbonate Aggregates Produced in the St. Lawrence Lowlands(Quebec, Canada). —Part 2:Proposed Limits, Rates of Expansion, and Microstructure of Reaction Products. Cement and Concrete Research, Vol.21, No.6, p.1069-1082.
    Gillott, J. E. and Swenson, E. G.(1973)Some Unusual Alkali-Expansive Aggregate, Engineering Geology, Vol.7, p.181-195.
    Gillott, J. E.(1975)Alkali-Aggregate Reactions in Concrete, Engineering Geology, Vol.9, p.303-326.
    Gogte, B. S. (1993) An Evalution of Some Common Indian Rocks with Special Reference to Alkali-Aggregate Reactions, Engineering Geology, Vol.7, p135-153
    Grattan-Bellew, P. E.(1997)A Critical Review of Ultra-accelerated Tests for Alkali-Silica Reactivity, Cement and Concrete Composites, Vol.19, p.403-414.
    Gratton-Bellow, P. E.(1986)Is High Undulatory Extinction in Quartz Indicative of Alkali-Expansivity of Granitic Aggregate? Proceeding of the 7th International Conference on Alkali-Aggregate Reaction, Ottawa, p.434-439.
    Hadley, D. W.(1961)Alkali reaction of carbonate rocks-expansion and dedolomitization, Proceeding Highway Research Board, Vol.40, p.462-474.
    Hobbs, D. W. and Gutteridge W. A.(1979)Particle size of aggregate and its influence upon the expansion caused by the alkali-silica reaction, Magazine of Concrete Research, Vol.31, p.235-242.
    Hobbs, D. W.(1988)Alkali-Silica Research in Concrete, Thomas Telford, London. p.1-32.
    Hobbs, D. W.(1990)Cracking and Expansion due to the Alkali-Silica Reaction:Its Effect on Concrete, Structural Engineering Review, Vol.2, p.65-79.
    Hooton, R. D. and Rogers, C. A.(1993)Development of the NBRI rapid mortar bar test leading to its use in North America, Construction and Building Materials, Vol.7, No.3, p.145-148.
    Ineson, P. R.(1990)Siliceous Components in Aggregates, Cement & Composites, Vol.12, p.185-190.
    Katayama, T.(1997)Petrography of Alkali-Aggregate Reactions in Concrete Reactive Minerals and Reaction Products, East Asia Alkali-Aggregate Reaction Seminar, Tottori, p45-61
    Lane, D. S.(1999)Comparison of Results from C 441 and C 1293 with Implications for Establishing Criteria for ASR-Resistant Concrete, Cement, Concrete, and Aggregates, Vol.21, No.2, p.149-156.
    Ludmila, D. M.(1983)Handbook of concrete aggregates, Noyes Publications, Park Ridge, New Jersey, U.S.A.
    MacNeill, S. G., Langley, W. S., and Soles, James A.(1993)Alkali-Reactive Aggregates in Nova Scotia:CANMET Studies of their Distribution and Control of the Reactivity, Cement & Concrete Composites, Vol.15, p.7-12.
    Milanesi, C. A., and Batic, O. R.(1994)Alkali Reactivity of Dolomitic Rocks From Argentina, Cement and Concrete Research, Vol.24, No.6, p.1073-1084.
    Mitsunori Kawamura and Makoto Ichise(1990)Characteristics of Alkali-Silica Reaction in the Presence of Sodium and Calcium Chloride, Cement and Concrete Research, Vol.22, p.757-766.
    Natesaiyer, K. and Hover, K. C. (1989) Insitu identification of ASR products in concrete, Cement and Concrete Research, Vol.18, p.455-463.
    National Research Council(1993)Alkali-Silica Reactivity:An Overview of Research. Report SHRP-C-342. Strategic Highway Research Program, National Research Council, Washington DC.
    Oberholster, R. E. and Davies, G.(1986)An Accelerated Method for Testing the Potential Alkali Reactivity of Siliceous Aggregates. Cement and Concrete Research. Vol.16, No.2, p.181-189.
    Patrick, W. A. and Barclay, E. H.(1925)J. phys. Chem..,29, p.1400
    Poole, A. B. and Sotiropoulos, P.(1980)Reactions between Dolomitic Aggregate and Alkali Pore Fluids in Concrete, Quarterly Journal of Engineering Geology, Vol.13, p.281-287.
    Ranc, R., Isabelle, H., Clement, J. Y., and Sorrentino, D.(1994)Limits of Application of the ASTM C 2274 Mortar Bar Test. Comparison with Two Other Standards on Alkali Aggregate Reactivity, Cement, Concrete, and Aggregates, Vol.16, No.1, p.63-72.
    Regourd, M. and Hornain, H.(1986)Microstructure of Reaction Products:7th International Conference on Alkali-Aggregate Reaction, Ottawa, p.375-380.
    Rogers, C. A. and Hooton, R. D.(1989)Leaching of Alkali-Aggregate Reaction Testing:8th International Conference on Alkali-Aggregate Reaction, Kyoto, p.327-332.
    Rogers, C. A.(1993)Alkali-Aggregate Reactivity in Canada, Cement and Concrete Composites, Vol.15, p.13-19.
    Shayan, A. and Quick, G.(1989)Mcrostructure and Composition of AAR Products in Conventional Standard and New Accelerated Testing, Proceeding 8th International Conference on Alkali-Aggregate Reaction, Kyoto, p.475-482.
    Shayan, A.(1992)Prediction of Alkali Reactivity Potential of Some Australian Aggregate and Correlation with Service Performance, Materials Journal, Vol.89, No.1, p.13-23.
    Shayan, A.(1993)Alkali Reactivity of Deformed Granitic Rocks:A Case Study, Cement and Concrete Research, Vol.23. p.1229-1236.
    Sibbick, R. G. and Page, C. L.(1998)Mechanisms Affecting the Development of Alkali-Silica Reaction in Hardened Concretes Exposed to Saline Environments, Magazine of Concrete Research, Vol.50, No.2, p.147-159.
    Smith, M. R. and Collis, L(1993)Aggregates. Engineering Geology Special Publication No. 9. Geological Society, London. p.189-211.
    Stanton, T. E.(1940)The expansion of concrete through reaction between cement and concrete, Proc. American Soc. Civil Engineers, Vol.66, p.1781-1811.
    Stanton, T. E.(1942)Expansion of concrete through reaction between cement and concrete, American Soc. Chem. Engineers Trans., Vol.107, p.54-84.
    Swamy, R. N.(1990)Alkali-Silica Reaction and Concrete Structures, Structural Engineering Review, Vol.2, p.89-103.
    Swamy, R. N.(1997)Assessment and Rehabilitation of AAR-affected Structures, Cement and Concrete Composites, Vol.19, p.427-440.
    Thaulow, N., Jakobsen, U. H., and Clark, B.(1996)Composition of Alkali Silica Gel and Ettringite in Concrete Railroad Ties:SEM-EDX and X-ray Diffraction Analyses, Cement and Concrete Research, Vol.26, No.2, p.309-318.
    Thomas, M. D. A., Hooton, R. D., and Rogers, C. A.(1997)Prevention of Damage Due to Alkali-Aggregate Reaction(AAR)in Concrete Construction-Canadian Approach, Cement, Concrete, and Aggregates, Vol.19, No.1, p.26-30.
    Tomosawa, F., Tamura, K., and Abe, M. (1989) Influence of Water Content of Concrete on Alkali-Aggregate Reaction, Proceeding 8th International Conference on Alkali-Aggregate Reaction, Kyoto, p.881-885.
    Tong Liang and Tang Mingshu(1997)A Case of Two Airport Runways affected by Alkali-Carbonate Reaction. Part two:Microstructual Investigations, Cement and Concrete Research, Vol.27, No.3, p.329-336.
    Tong Liang, Deng Min, Lan Xianhui and Tang Mingshu(1997)A Case of Two Airport Runways affected by Alkali-Carbonate Reaction. Part One:Evidence of Deterioration and Evaluation of Aggregates, Cement and Concrete Research, Vol.27, No.3, p.321-328.
    Van Aardt, J. H. P. and Visser, S.(1977)Calcium hydroxide attack on felspars and clays:possible relevance to cement-aggregate reaction, Cement and Concrete Research, Vol.7, p.643-648.
    Vivian, H. E.(1950)Some Australian Studies on Cement-Aggregate Reaction in Mortar, Proc. American Soc. Civil Engineers, Vol.21, No.8, p.617-621.
    West, G.(1991)A Note on Undulatory Extinction of Quartz in Granite,Quarterly Journal of Engineering Geology, Vol.24, p.159-165.
    Woolf, D. O.(1952) Reaction of Aggregate with Low-Alkali Cement,
    Public Roads, Vol.27, No.3, p.50-56.
    Whiting, N. M.(1999)Comparison of Field Observations with Laboratory Test Results on Concretes Undergoing Alkali-Silica Reaction, Cement, Concrete, and Aggregates, Vol.21, No.2, p.142-148.
    Wigum, B. J. and French, W. J.(1996)Sequential examination of slowly expanding alkali-reaction aggregates in accelerated mortar bar testing, Magazine of Concrete Research, Vol.48, No.177, p.281-292.
    Zhongzi, Xu and Hooton, R. D.(1993)Migration of Alkali Ions in Mortar due to Several Mechanisms, Cement and Concrete Research, Vol.23, No.4, p.951-961.
    Yen T., B. L. Chu, C. K. Lu (1996) Alkali-Aggregate Reactivity In Western Taiwan, Proceeding 10th International Conference on Alkali-Aggregate Reaction in Concrete, Australia, p.166-173.

    QR CODE
    :::