跳到主要內容

簡易檢索 / 詳目顯示

研究生: 任光正
Kuang-Cheng Jen
論文名稱: 裂隙岩體之基礎承載力異向性與變異性
指導教授: 田永銘
Yong-Ming Tien
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 133
中文關鍵詞: PFC3D合成岩體岩石基礎徑向膨脹法岩石異向性
外文關鍵詞: rock foundation
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以 PFC3D (Particle Flow Code in three dimensions)數值軟體進行裂隙
    岩體之工程特性模擬,配合改變基礎長軸與不連續面位態之角度(α、γ)、
    裂隙程度(P32)、裂隙直徑(D)、費雪常數(κ)等參數研究,進行岩石基礎承載
    力異向性與變異性分析。
    研究結果顯示上述參數對於裂隙岩體之承載力異向性與變異性有不同
    程度影響。承載力變異性方面:(1) 承載力變異係數與傾角(α)具有倒 U 型
    關係。(2) 承載力變異係數隨γ(基礎長軸與不連續面走向交角)增加而降
    低,當γ=90 ゚時變異係數最低。(3) 裂隙程度、裂隙直徑越大,承載力變異
    性越明顯。費雪常數越大,承載力隨α改變之變異性與異向性趨勢相反。而
    在承載力異向性方面:(4) 裂隙程度、裂隙直徑、費雪常數越大,承載力異
    向性越明顯。(5) 承載力隨傾角(α)具有 U 型關係,與單壓強度之異向性相
    似。(6) 承載力隨α與γ而變動,而α的影響比γ顯著,且當γ=0 ゚時,承
    載力最低,故以γ=0 ゚進行分析,可獲致偏保守側之承載力。(7) 基於數值
    模擬結果,本文提出裂隙位態對基礎承載力分級之建議,可介接 RMR 分類
    法針對岩石基礎之評分調整。


    The research uses PFC3D (Particle Flow Code in three dimensions)
    numerical software to simulate the engineering characteristics of fractured
    rock masses, and introduces the discrete element method (Discrete Element
    Method) using radial expansion from the Finite Element Method (Finite
    Element Method) mesh size concept. Radial Expansion), used to quickly
    check the characteristics of large-scale rock foundation engineering, with
    orientation of discontinuities, fracture intensity (P32), diameter of
    discontinuities (D), Fisher constant (κ) these parametric research and
    analysis of the optimal orientation of the rock foundation.
    Conclusions: (a) The greater anisotropy ratio, the greater difference
    in strength between different orientation. (b) Both dip and dip-direction of
    discontinuities have an anisotropic influence on the bearing capacity. (c)
    When D and P32 increase, the bearing capacity decreases. (e) When the rate
    of bond replacement is over 50% in simulation, the SRM will fail. (f) The
    coefficient of variation will increase with greater D、 P32、κ, it presents
    the uncertainty of the bearing capacity has the positive relationship with
    anisotropy ratio(AR). (g) When the long axis of the foundation is
    orthogonal to the strike of the discontinuity, the bearing capacity will
    increase and the anisotropy will decrease compared to other orientation.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 XII 第一章、緒論 1 1.1 研究動機 1 1.2 研究方法與目的 3 1.3 研究架構 5 第二章、文獻回顧 6 2.1 岩體材料參數 6 2.2 合成岩體 14 2.2.1 鍵結顆粒模型(BPM) 15 2.2.2 離散裂隙網路(DFN) 17 2.2.3 平滑節理模型(SJM) 21 2.3 岩石基礎承載力相關理論 22 2.3.1 等向性岩體 22 2.3.2 橫向等向性岩體 23 2.3.3 Bell(1915)承載力公式 25 2.3.4 Ladanyi(1968)承載力公式 27 2.3.5 節理岩體承載力 28 第三章、數值模擬方法與模型建立 29 3.1 研究流程 29 3.2 模型建構 32 3.2.1 模擬一般岩石試驗 32 3.2.2 模擬承載力試驗 35 3.3 提升模擬效率方法 38 第四章、裂隙岩體參數敏感性分析 43 4.1 模擬完整岩體力學性質 43 4.1.1 微觀參數與巨觀參數之關係 46 4.2 模擬裂隙岩體力學性質 53 4.2.1 微觀參數與強度異向性 53 4.2.2 裂隙參數與強度異向性 57 第五章、基礎極限承載力之模擬結果 61 5.1 不連續面參數對承載力的異向性 62 5.1.1 κ對承載力的影響 64 5.1.2 D對承載力的影響 71 5.1.3 P32對承載力的影響 73 5.1.4 限制傾向或傾角對承載力的影響 75 5.2基礎形狀因子對承載力的異向性 80 5.3不連續面參數對承載力的變異性 84 第六章、結論與建議 91 6.1結論 91 6.1.1 力學行為模擬 91 6.1.2 基礎承載力模擬 92 6.2建議 94 附件: 95 參考文獻 113

    1. 黃玉麟,「崩積地層的組成及形成機制-以梨山地區為例」,國立交通大學土木工程系,碩士論文,新竹(2006)。
    2. 廖智偉,「膠結不良砂岩淺基礎模型承載行為」,國立交通大學土木工程系,碩士論文,新竹(2003)。
    3. 劉英助,「人造膠結不良砂岩之模型承載試驗設備建立與淺基礎承載試驗」,國立交通大學土木工程系,碩士論文,新竹(2002)。
    4. 劉家豪,「橫向等向性合成岩體之力學行為及其變異性」,國立中央大學土木工程系,碩士論文,中壢(2019)。
    5. 劉家豪、田永銘、裴文斌、黃致維、任光正,「以合成岩體模擬橫向等向性岩體之力學行為」,第十八屆大地工程學術研討會,國立屏東科技大學,屏東(2020)。
    6. 劉盛華,「梨山崩積層內軟弱材料之力學行為」,國立交通大學土木工程系,碩士論文,新竹(2006)。
    7. 盧育辰,「以UDEC模擬互層材料之力學行為」,國立中央大學土木工程系,碩士論文,中壢(2009)。
    8. Bell, F. G., Engineering in Rock Masses, Butterworth – Heinemann, Oxford (1992).
    9. Bieniawski, Z.T., Engineering Rock Mass Classifications, A Wiley-interscience publication, American, pp.7 (1989).
    10. Boussinesq, M.J., Applications des potentials, a l’etude de l’equilibre et du movement des solides elastique. Gauthier-Villars, Paris (1885).
    11. Bray, J., Unpublished notes, Imperial College, London (1977).
    12. Einstein, H.H., and Baecher, G.B., “Probabilistic and statistical methods in engineering geology,” Rock Mech Rock Eng, Vol. 16, pp.39-72 (1983).
    13. Goodman, R. E., Introduction to Rock Mechnics, 2nd edn, John Wiley, Chichester, pp. 562 (1989).
    14. Goodman, R.E. Introduction to Rock Mechanics, Wiley, New York, pp. 8–305 (1980).
    15. Ivars, D., Pierce, M., Gagne, D. and Darcel, C., “Anisotropy and scale dependency in jointedrock mass strength-a synthetic rock massstudy,” Proceedings of the First International FLAC/DEM Symposium on Numerical Modeling, pp. 231-239 (2008).
    16. Kulatilake, P.H.S.W., Malama, B., and Wang, J., “Physical and particle flow modeling of jointed rock block behavior under uniaxial loading,” Int J Rock Mech Min Sci, Vol. 38, pp. 641-657 (2001).
    17. Ladanyi, B. and Roy, A., Some aspects of the bearing capacity of rock mass. Proc. 7th Canadian Symp. Rock Mechanics, Edmonton (1971).
    18. Lei, Q., Latham, J.P., and Tsang, C.F., “The use of discrete fracture networks for modelling coupled geomechanical and hydrological behavior of fractured rocks,” Computers and Geotechnics, Vol. 85, pp. 151-176 (2017).
    19. Ivars, D., Pierce, M., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., and Cundall, P.A., “The synthetic rock mass approach for jointed rock mass modelling,” Int J Rock Mech Min Sci, Vol. 48(2), pp. 219-244 (2011).
    20. Pierce, M., Ivars, D.M., and Sainsbury, B., “Use of Synthetic Rock Masses (SRM) to Investigate Jointed Rock Mass Strength and Deformation Behavior,” In: Anonymous proceedings of the international conference on rock joints and jointed rock masses, Tucson, Arizona, USA. (2009).
    21. Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for rock,” Int J Rock Mech Min Sci, Vol. 41(8), pp. 1329-1364 (2004).
    22. Scholtès, L., and Donze, F.V., “Modelling progressive failure in fractured rock masses using a 3D discrete element method,” Int J Rock Mech Min Sci, Vol. 52, pp. 18-30 (2012).
    23. Sowers George F., Introductory Soil Mechanics and Foundation, 4th Edition, Macmillan, New York (1979).
    24. Sutcliffe, D. J., Yu, H. S., and Sloan, S. W., “Lower bound solutions for bearing capacity of jointed rock,” Computers and Geotechnics, Vol. 31, no. 1, pp. 23–36 (2004).
    25. Wyllie, D.C, and Mah, C. W., Rock Slope Engineering (4th ed.), Taylor & Francis e-Library, pp. 130-242 (2005).

    QR CODE
    :::