跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡伯因
Po-yin Chien
論文名稱: 熱電效應對碲化鉍系統與擴散阻障層之界面反應研究
Polarity effect in SAC305/bismuth telluride thermoelectric system
指導教授: 吳子嘉
ALBERT T. WU
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 86
中文關鍵詞: 碲化鉍熱電材料火花電漿燒結電遷移鎳磷Peltier效應界面反應無鉛銲料
外文關鍵詞: Bi2Te3, Thermoelectric materials, Spark plasma sintering, Electromigration, Ni-P, Peltier effect, Interfacial reactions, Lead-free solder
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要討論p型和n型Bi2Te3熱電材料與擴散阻障層Ni-P在電遷移效應下之界面反應。電流效應與Peltier效應為影響介金屬化合物之主要因素。銲料SAC305與p型和n型Bi2Te3熱電材料接合後,在不同電流密度與不同溫度下進行測試。Bi2Te3材料係以火花電漿燒結(SPS)技術所製成,且在其表面與銲料間鍍上擴散阻障層Ni-P。
    實驗結果顯示,Ni-P可防止多孔性之脆性化合物SnTe的生成,在經過長時間的實驗條件下之後,Ni-P仍然可保有其完整之界面,此性質為維持銲接點可靠度之重要因素。另外,在SAC305/Ni-P與Ni-P/p, n-Bi2Te3界面中觀察到(Cu, Ni)6Sn5 和NiTe的生成。從反應時間與化合物生長厚度之關係結果可發現,此兩種化合物不僅有明顯之成長,且在陰極與陽極分別有不同的厚度。而從化合物之主要擴散元素反應機制可得知,在低電流密度之下,陰陽極兩端主要受到電子擴散通量方向的影響;當通過高電流密度時,Peltier效應則主導了熱電系統中介金屬化合物之生成。


    This study investigates electromigration in Bi2Te3 thermoelectric (TE) material systems and the effectiveness of the diffusion barrier under current. The influences of the interfacial reaction by electromigration and Peltier effect were decoupled in this research. n- and p-type Bi2Te3 were connected to SAC305 solders and different current densities at various temperatures were applied. The Bi2Te3 samples were fabricated by the Spark Plasma Sintering (SPS) technique and electroless Ni-P was deposited at the solder/TE interfaces.
    The results elucidate the importance of the Ni diffusion barrier to the joint reliability. Different intermetallic compound (IMC) layers including (Cu, Ni)6Sn5 and NiTe formed at solder/Ni-P and Ni-P/substrate interfaces, respectively. The results show that the mechanism of compound growth was dominated by electromigration at low current density and dominated by Peltier effect at high current density.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 序論 1 1-1前言 1 1-2熱電材料之發展 1 1-3熱電優值 3 1-4熱電模組 4 1-4-1碲化鉍系熱電材料 5 1-4-2無鉛銲料與介金屬化合物 6 1-4-3陶瓷基板 7 1-5火花電漿燒結 7 1-6界面反應 9 1-7銲料與基材之界面反應文獻回顧 9 1-7-1 Sn/Te反應偶 10 1-7-2 Sn-Cu/Te反應偶 10 1-7-3 Sn-Ag/Te反應偶 11 1-7-4擴散阻障層鎳與熱電基材之界面反應 13 1-7-5擴散阻障層鎳與銲料之界面反應 15 1-8無電鍍鎳 20 1-8-1無電鍍鎳原理 20 1-8-2無電鍍液之組成與結構 20 1-9電遷移現象 23 1-9-1電遷移對界面反應之影響 24 1-10研究目的 28 第二章 實驗方法 29 2-1材料製備 29 2-1-1熱電材料 29 2-1-2無鉛銲料 29 2-2無電鍍鎳磷 29 2-3電遷移試片 30 2-4界面反應 32 2-5試片分析 32 2-5-1掃描式電子顯微鏡(SEM) 32 2-5-2電子微探儀(EPMA) 33 2-5-3紅外線熱像儀(IR) 34 第三章 實驗結果與討論 35 3-1界面反應 35 3-2反應界面之化合物分析與鑑定 37 3-2-1 n型熱電模組系統 37 3-2-2 p型熱電模組系統 39 3-3電遷移之影響 40 3-3-1電遷移效應對p型熱電模組之影響 40 3-3-2電遷移效應對n型熱電模組之影響 45 3-3-3電遷移效應對p型熱電模組中(Cu, Ni)6Sn5的影響 50 3-3-4電遷移效應對n型熱電模組中(Cu, Ni)6Sn5的影響 52 3-3-5擴散阻障層鎳磷對熱電模組的影響 55 3-3-6電遷移效應對p型熱電模組中NiTe的影響 56 3-3-7電遷移效應對n型熱電模組中NiTe的影響 57 3-4熱電模組之熱溫度分析 60 3-4-1試片通電後之熱溫度分析 60 3-4-2 p型通電試片與純退火試片之化合物厚度關係 65 3-4-3 n型通電試片與純退火試片之化合物厚度關係 66 第四章 結論 68 參考文獻 69

    參考文獻
    1. Aaron D. LaLonde, Yanzhong Pei, Heng Wang, and G. Jeffrey Snyder, ‘‘Lead Telluride Alloy Thermoelectrics’’, Mater. Today 14, 526 (2011).
    2. J.F. Li, W.S. Liu, L.D. Zhao, and M. Zhou, ‘‘High-performance nanostructured thermoelectric materials’’, NPG Asia Mater, 2, 152 (2010)
    3. S. Michel, S. Diliberto, N. Stein, B. Bolle, and C. Boulanger, ‘‘Characterisation of Electroplated Bi2(Te1−xSex)3 Alloys’’, J. Solid State Electrochem. 12, 95 (2008)
    4. 周雅文, ‘‘火花電漿燒結技術於熱電材料開發之應用’’, 工業材料雜誌287期 (2010)
    5. H. Böttner, D.G. Ebling, A. Jacquot, K. König, L. Kirste, and J. Schmidt, ‘‘Structural and Mechanical Properties of Spark Plasma Sintered n- and p-type Bismuth Telluride Alloys’’, phys. Stat. sol. 1, 235 (2007).
    6. S.W. Chen and C.N. Chiu, ‘‘Unusual cruciform pattern interfacial reactions in Sn/Te couples’’, Scripta Mater. 56, 97 (2007).
    7. M.L. Huang, T. Loeher, A. Ostmann, and H. Reichi, ‘‘Role of Cu in dissolution kinetics of Cu metallization in molten Sn-based solders’’, Appl. Phys. Lett. 86, 181908 (2005).
    8. S.C. Hsu, S.J. Wang, and C.Y. Liu, ‘‘Effect of Cu content on interfacial reactions between Sn(Cu) alloys and Ni/Ti thin-film metallization’’, J. Electron. Mater. 32, 1214 (2003).
    9. C.N. Liao and C.H. Lee, ‘‘Suppression of vigorous liquid Sn/Te reactions by Sn–Cu solder alloys’’ J. Mater. Res. 23, 3303 (2008).
    10. C.N. Liao and Y.C. Huang, ‘‘Effect of Ag addition in Sn on growth of SnTe compound during reaction between molten solder and tellurium’’, J. Mater. Res. 25, 391 (2010).
    11. T.Y. Lin, C.N. Liao, and A.T. Wu, “Evaluation of Diffusion Barrier Between Lead-Free Solder Systems and Thermoelectric Materials” J. Electron. Mater. 41, 153 (2011).
    12. J.W. Jang, D.R. Frear, T.Y. Lee, and K.N. Tu, “Morphology of interfacial reaction between lead-free solders and electroless Ni–P under bump metallization” J. Appl. Phys. 88, 6359 (2000).
    13. C.Y. Ko and A.T. Wu, “Evaluation of Diffusion Barrier Between Pure Sn and Te” J. Electron. Mater. 41, 3320 (2012).
    14. L.C. Lo and A.T. Wu, “Interfacial Reactions Between Diffusion Barriers and Thermoelectric Materials Under Current Stressing”, J. Electron. Mater. 41, 3325 (2012).
    15. Y.C. Lan, D.Z. Wang, G. Chen, and Z.F. Ren, “Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials”, Appl. Phys. Lett. 92, 101910 (2008).
    16. O.D. Iyore, T.H. Lee, R.P. Gupta, J.B. White, H.N. Alshareef, M.J. Kim, and B.E. Gnade, “Interface characterization of nickel contacts to bulk bismuth tellurium selenide”, Surf. Interface Anal. 41, 440 (2009).
    17. J.W.G. Bos, H.W. Zandbergen, M.H. Lee, N.P. Ong, and R.J. Cava, “Structures and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n”, Phys. Rev. B 75, 195203 (2007).
    18. K. Zeng, V. Vuorinen, and K. Kivilahti, “Electrical Test Structures for the Characterization of Optical Proximity Correction”, IEEE 25, 162 (2002).
    19. V. Vuorinen, K. Zeng, and J. K. Kivilahti, Phase formation in SnAgCu solder joints on the Ni(P)/Au surface finish, Tech. Rep., Helsinki Univ. Technol., Helsinki, Finland, 2002.
    20. Y.C. Lin and J.G. Duh, “Phase transformation of the phosphorus-rich layer in SnAgCu/Ni–P solder joints” Scripta Mater. 54, 1661 (2006).
    21. Y.C. Sohn, J. Yu, S.K. Kang, D.Y. Shih, and T.Y. Lee. “Spalling of intermetallic compounds during the reaction between lead-free solders and electroless Ni-P metallization”, J. Mater. Res. 19, 2428 (2011).
    22. S.W. Kim, J.W. Yoon, and S.B. Jeng, “Interfacial reactions and shear strengths between Sn-Ag-based Pb-free solder balls and Au/EN/Cu metallization”, J. Electron. Mater. 33, 1182 (2004).
    23. C.F. Tseng, T.K. Lee, G. Ramakrishna, K.C. Liu, and J.G. Duh, “Suppressing Ni3Sn4 formation in the Sn–Ag–Cu solder joints with Ni–P/Pd/Au surface finish”, Mater. Lett. 65, 3216 (2011).
    24. K.H. Krishnan, S. John, K.N. Srinivasan, J. Praveen, M. Ganesan, and P.M. Kavimani, “An overall aspect of electroless Ni-P depositions—A review article”, Metall. Mater. Trans. A 37, 1917 (2006).
    25. H. Okamoto, “Ni-P (nickel-phosphorus)”, J. Phase Equilib. 21, 210 (2000).
    26. H.B. Huntington, A.S. Nowick, and J.J. Burton, Diffusion in solid:Recent development, Academic Press, New York, 1975.
    27. A.H. Verbruggen, “Fundamental questions in the theory of electromigration”, IBM Journal of Research and Development 32, 93 (1988).
    28. H.B. Huntington and A.R. Grone, J. Phys. Chem. Solids 23, 123 (1961).
    29. K.N. Tu, J.W. Mayer, and L.C. Feldman, Electronic Thin Film Science for Electrical Engineers and Materials Scientists, Maxwell Macmillan, New York 1992.
    30. J. Tao, N.W. Cheung, and C. Hu, ‘‘Electromigration characteristics of copper interconnects’’, IEEE 14, 249 (1993).
    31. K.N. Tu, ‘‘Recent advances on electromigration in very-large-scale-integration of interconnects’’, J. Appl. Phys. 94, 5451 (2003).
    32. S.W. Chen, C.M. Chen, and W.C. Liu, ‘‘Electric Current Effects Upon the Sn/Cu and Sn/Ni Interfacial Reactions’’, J. Electron. Mater. 27, 1193 (1998).
    33. C.M. Chen and S.W. Chen, ‘‘Electric Current Effects on Sn/Ag Interfacial Reactions’’, J. Electron. Mater. 28, 902 (1999).
    34. S.W. Chen, and C.M. Chen, ‘‘Electromigration Effects upon Interfacial Reaction’’, JOM 55, 62 (2003).
    35. H. Gan and K.N. Tu, ‘‘Polarity Effect of Electromigration on Kinetics of Intermetallic Compound formation in Pb-free Solder V-groove Samples’’, J. Appl. Phys. 97, 063514 (2005).
    36. W.H. Wu, H.L. Chung, C.N. Chen, and C.E Ho, “The Influence of Current Direction on the Cu-Ni Cross-Interaction in Cu/Sn/Ni Diffusion Couples”, J. Electro. Mater 38, 2563 (2009).
    37. Y.C. Lan, D.Z. Wang, G. Chen, and Z.F. Ren, “Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials”, Appl. Phys. Lett. 92, 101910 (2008).

    QR CODE
    :::