跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴鴻誌
Hong-Zhi Lai
論文名稱: 液體黏度及含量對迴流強度影響之探討
The Effects of Viscosity and Content of Liquid on Convection Strength of Vibrated Granular Bed
指導教授: 蕭述三
Shu-San Hsiau
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系在職專班
Executive Master of Mechanical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 76
中文關鍵詞: 振動床粒子流迴流分離內聚力
外文關鍵詞: Granular flow, Vibrating bed, Cohesion, Segregation, Convective flows
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要在探討顆粒振動床內含有不同黏度及不同含量液體時對於顆粒床迴流運動所造成之影響。實驗方法是藉由改變液體黏度及含量來觀察一大顆粒體於小顆粒床內隨時間上升之過程,利用大粒子上升速度及邊壁粒子下降速度來表示顆粒振動床中迴流運動的強弱大小。本實驗發現在固定振動條件下,當不同黏度液體含量在少量的特定範圈內時,大粒子平均速度都有隨液體含量增加而上升的趨勢;但當液體含量高於某一臨界值之後,上升速度會隨著液體含量之增加而減弱。對於相同含量但黏度不同液體的比較,在添加較低黏度的液體時,大粒子上升平均速度較快,邊壁粒子下降速度變化也有類似上述狀況。本論文說明了液體黏度變化及液體含量的多寡對於顆粒振動床內迴流運動强弱的影響。


    The study investigates the effects of viscosity and content of liquid on convection strength in a vibrated granular bed. The one large glass bead was placed in a vibrated bed and the rising velocity of the one was measured to characterize the convection strength. The rising velocity of the large glass bead increased with increasing added content of liquid at small added content. As the added content of liquid was more than the critical value, the rising velocity of the large glass bead decreased with increasing added liquid content. The rising velocity was increased with decreasing viscosity of liquid. The dimensionless numbers were used to explain the effects of added liquid content and viscosity on convection strength of a vibrated granular bed in the paper.

    目錄 摘要...............................................I Abstract..........................................II 誌謝.............................................III 附表目錄......................................... VI 附圖目錄........................................ VII 符號說明..........................................IX 第一章 簡介........................................1 1.1 粒子流介紹.....................................1 1.1.1 顆粒體介紹...................................1 1.1.2 粒子流與一般流體之異同...................2 1.1.3 垂直振動床應用於粒子流的研究歷史.........6 1.2 液體含量對顆粒體運動現象的影響................11 1.3 液橋現象......................................13 1.4 研究方向與架構................................16 第二章 實驗方法...................................18 2.1 實驗設備及實驗材料............................18 2.2 實驗控制參數..................................24 2.3 實驗原理與方法................................26 2.4 實驗步驟......................................27 2.5 誤差分析......................................30 第三章 結果與討論.................................32 3.1找尋等速度的區域...............................32 3.2矽油含量對迴流現象之影響.......................33 3.3矽油黏度對迴流現象之影響.......................36 3.4矽油黏度及含量與邊壁粒子下降速度的關係.........39 第四章 結論.......................................44 參考文獻..........................................46

    參考文獻
    Bachman, D., 1940, Verfahrenstechnik Z .D.I . Beiheft, No. 2, p. 43. (cited by Thomas et al., 1989.)
    Brennen, C. E., Ghosh, S., and Wassgren, C. R, 1996, “ Vertical oscillation of a bed of granular material,” J. of Appl. Mech., Vol. 63,No. 1, pp.156-161.
    Campbell, C. S. and Brennen, C. E., 1985, “Computer simulation of granular shear flows,” J. Fluid Mech., Vol. 151, pp. 167-188.
    Chlenov, V. A. and Mikhailov, N.V., 1965, “Some properties of a vibrating fluidized bed,” J. of Eng. Phys., Vol. 9, pp. 137-139
    Duran, J., Rajchenbach, J. and Clement, E., 1993, “Arching effect model for particle size segregation,” Phys. Rev. Lett., Vol. 70, pp. 2431-2434.
    Evesque, P. and Rajchenbach, J., 1989, “Instability in a sand heap,” Phys. Rev. Lett., Vol. 69, No. 1, pp. 44-46.
    Florence, C., Daniel, B. and Stephane, R., 1997, “Kinetics of segregation of granular media in a two-dimensional rotating drum,” Powder Technol, Vol. 93, pp. 1-11.
    Grossman, E. L., 1997, “Effects of container geometry on granular convection,” Phys. Rev. E., Vol. 56, No. 3, pp. 3290-3299.
    Hsiau, S. S. and Pan, S. J., 1998, “Motion state transitions in a vibrated granular bed,” Powder Technol., Vol. 96, pp.219-226.
    Hsiau, S. S., Wu, M. H. and Chen, C. H., 1998, “Arching phenomena in a vibrated granular bed,” Powder Technol., Vol. 99, pp. 185-193
    Hsiau, S. S. and Yang, S. C., 2003, “Numerical simulation of self-diffusion and mixing in a vibrated granular bed with the Cohesive Effect of Liquid Bridges,” Chem. Eng. Sci., Vol. 58, pp. 339-352.
    Iveson, S. M., Wauters, P.A.L., Forrest, S., Litster, J.D., Meesters, G.M.H. and Scarlett, B., 2001, “Growth regime map for liquid-bound granules: further development and experimental validation,” Powder Technol., Vol. 117, p.83-97.
    Iveson, S. M., Beathe, J. A., and Page, N. W., 2002, “The dynamic strength of partially saturated powder compacts: the effect of liquid propertyes, ” Powder Technol., Vol. 127, p.149-161.
    Jain, K. and McCarthy, J. J., 2002, “Discrete characterization of cohesion in gas-solid flows,” Proceedings of Imece 2002, Imece 2002-32491
    Johanson, K., Rabinovicha, Y., Moudgilb, B., Breeceb, K., and Taylor, H., 2003, “Relationship between particle scale capillary forces and bulk unconfined yield strength,” Powder Technol., Vol. 138, pp. 13-17.
    Knight, J.B., Jaeger, H.M., Nagel, S.R., 1993. “Vibration-induced size separation in granular media: the convection connection,” Phys. Rev. Lett., Vol. 70, pp. 3728-3731.
    Knight, J. B., Ehrichs, E. E., Kuperman, V. Y., Flint, Jaeger, H. M., and Nagel, S. R., 1996, “An experimental study of granular convection,” Phys. Rev. E., Vol. 54, pp. 5726-5738.
    Knight, J. B., 1997, “External boundaries and internal shear bands in granular convection,” Phys. Rev. E., Vol. 55, No. 5, pp. 6016-6023.
    Kohonen, M. M., Geromichalosb, D., Scheelb, D., Schierb, C., and Herminghausb, S., 2004, “On capillary bridges in wet granular materials,” Phys. A., Vol. 339, pp. 7-15.
    Kudrolli, A., 2004. “Size separation in vibrated granular matter,” Rep. Prog. Phys. Vol. 67, pp. 209-247.
    Lan, Y. and Rosato, A. D., 1995, “Macroscopic behavior of vibrating beds of smooth inelastic spheres,” Phys. Fluids, Vol. 7, No. 8, pp. 1818-1831.
    Laroche, C., Douady, S., and Fauve, S., 1990, “Convective flow of granular masses under vertical vibrations,” J. Phys. France, Vol. 50, No.7, pp. 699-706.
    Lee, J., 1994, “Heap formation in two-dimensional granular media,” J. Phys. A, 27, L257-L262.
    Li, Hongming. and McCarthy, J. J., 2006, “Cohesive particle mixing and segregation under shear,” Powder Technol., Vol. 164, pp.58-64.
    Lian, G., Adams, M. J. and Thornton, C., 1993, “A theoretical study of the liquid bridge forces between two rigid spherical bodies,” J. Colloid Interface Sci., Vol. 161, pp. 138-147.
    Lohse, D., Bergmann, R, Mikkelsen, R., Zeilstra, C. Meer, D., Versluis, M., Weele, K.,Hoef, M., Kuipers, H., 2004, “Soft matter, biological, and interdisciplinary physics impact on soft sand: void collapse and jet formation,” Phys. Rev. Lett., Vol. 93, pp. 198003-198100.
    Maher, M., Troy, S. and Fernando, J. M., 1999, “Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3d tumbling blenders,” Powder Technol., Vol. 109, pp. 58-71.
    Mahesh, T., Anubhav, T. and Andreas, A.,1998, “ Particle segregation in monodisperse sheared suspensions,” Physics of Fluids, Vol. 11, pp. 507-509.
    McCarthy, J. J., Khakhar, D. V. and Ottino, J. M., 2000, “Computational studies of granular mixing,” Powder Technol., Vol. 109, pp. 72-82.
    McCarthy, J. J., 2003, “Micro-modeling of cohesive mixing processes,” Powder Technol., Vol. 138, pp. 63-67.
    Muniandy, K., Liffman, K., Rhodes, M. and Metcalfe, G., 2002, “Segregation in vibrated granular materials,” CD-ROM of 4th World Congress Particle Technology., No.367, Sydney, Australia.
    Nase, S. T., Vargas, W. L., Abatan, A. A., and McCarthy, J. J., 2001, “Discrete characterization tools for cohesive granular material,” Powder Technol., Vol. 116, pp. 214-223.
    Oulahna, D., Cordier, F., Galet, L., and Dodds, J.A., 2003, “Wet granular: the effect of shear on granule properties,” Powder Technol., Vol. 130, pp. 238
    Pak, H., Van Doorn, E., and Behringer, R., 1995, “Effects of ambient gases on granular material under vertical vibration,” Phys. Rev. Lett., Vol. 74, No.23, pp. 4643-4646.
    Reynolds, O. 1885, “On the dilatancy of media composed of rigid particles in contact,” Phil. Mag., Vol. 20. pp. 469-481.
    Samadani, A. and Kudrrolli, A. 2000, “Segregation transitions in wet granular matter,” Phy. Rev. Lett., Vol. 85, pp. 5102-5105.
    Savage, S. B. and Lun, C. K. K., 1988, “Particle size segregation in Inclined chute flow of dry cohesionless granular solids,” J. Fluid Mech., Vol. 189, pp. 311-335.
    Taguchi, Y. H., 1992, “New origin of a convective motion : elasticall Induced convection in granular materials,” Phys. Rev. Lett., Vol. 69, pp. 1367-1370.
    Tai, C.H., Hsiau, S.S., 2004, “Dynamic behaviors of powders in a vibrated bed,” Powder Technol., Vol. 139, pp. 221-232.
    Thomas, B., Mason, M. O., Liu, Y. A. and Squires, A. M., 1989, “Identifying states in shallow vibrated beds,” Powder Technol., Vol.57, pp. 267-280.
    Wassgren, C. R., Brennen, C. E, and Hunt, M. L., 1996, “Vertical vibration of a deep beds of granular material in a contiainer,” J. Appl. Mech.,Vol.63, pp.712-719.
    Wassgren, C. R., 1997, “Vibration of granular materials,” Ph.D. Thesis, California Institute of Technology, California, USA.
    Yang, S. C. and Hsiau, S. S., 2001, “The simulation of powders with liquid bridges in a 2D vibrated bed,” Chem. Eng. Sci., Vol. 56, pp. 6837-6849.
    Yang, W. L. and Hsiau, S. S., 2005, “Wet granular materials in sheared flows,” Chem. Eng. Sci., Vol. 60, pp. 4265-4274.
    York, P., Rowe, R. C., 1994, “Monitoring granulateon size enlargement processes using mixer torque rheometry ,” 1st Int. Particle Technology Forum., Denver, USA.

    QR CODE
    :::