| 研究生: |
廖孜康 Tzu-Kang Liao |
|---|---|
| 論文名稱: |
聚(偏氟乙烯-三氟乙烯)薄膜的結構解析與感光壓電性質之研究 Structural-resolved Study of Photon-sensitive Piezoelectric Properties of P(VDF-TrFE) Films |
| 指導教授: |
黃爾文
E-Wen Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 壓電材料 、即時廣角繞射 、同步輻射光源 |
| 外文關鍵詞: | P(VDF-TrFE), Pizoelectric, in-situ x-ray |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用即時同步X光繞射同時量測高分子壓電材料P(VDF-TrFE)與摻入的感光材料TiOPc 隨外加溫度,電場和感光作用下的微結構演變進一步區分出隨著溫度、電壓或照光時間控制的效能-結構關係。複合材料相變化時,各相繞射峰強度改變和晶格應變是本研究發現最具相關性的數據。隨各上述變因改變的過程中,微結構的變化,清楚的顯示了(一)相變化對應溫度;(二)晶格應變反應出電壓和感光的效應。本研究並進一步的量化電壓和照光所造成的晶面間距改變對巨觀整體效能的貢獻,以探討P(VDF-TrFE)/TiOPc的製程差異引入的微結構如何改善性能。最後從各種材料(有/無極化,有/無摻TiOPc) 對上述效應的不同反應,進一步去推論造成 P(VDF-TrFE)/TiOPc 巨觀壓電係數 (d33) 改變的原由。我們的結論是(一)極化 (poling)製程可以強化TiOPc與P(VDF-TrFE)彼此的作用力,極化過的薄膜於繞射結果中,受電場與感光控制產生的波動比未極化的薄膜低;(二)摻入TiOPc後,顯著的影響薄膜的壓電性能;(三)TiOPc以感光特質對P(VDF-TrFE)提升對電場的敏感度。
Semi-crystalline polymer, Poly(vinylidene fluoride-co-trifluoroethylene) coupled with TiOPc powder, which has excellent sensitivity to visible light, is expected to bridge photo sensor and piezoelectric actuators. This composite material does not only retains good piezoelectric efficiency and possesses high sensitivity to visible light. The beta-phase P(VDF-TrFE) exhibits a good piezoelectric property. Our sample is composed of P(VDF-TrFE) and with and without TiOPc, respectively. When the samples were heated continuously, applied electrical voltage, light illumination, we used in-situ XRD to measure the microstructure evolution. In this study, we investigated the phase transition induced by heating up to 90℃. We observed the changes of lattices distance subjected to temperature, electric field and light illumination. We also measured the bulk (piezoelectric properties) d33. We found a linear correlation between the macroscopic d33 and microscopic lattice strain. Our equation can well describe the d33 variation and lattice evolution subjected to various temperature and voltages.
[1] 周卓明, 全華科技圖書股份有限公司, 民國 92 年 2003.
[2] G. Gautschi, Piezoelectric sensorics: force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers, Springer, 2002.
[3] H. Kawai, Japanese Journal of Applied Physics 1969, 8, 975.
[4] J. Bergman Jr, J. McFee, G. Crane, Applied Physics Letters 2003, 18, 203.
[5] K. i. Nakamura, Y. Wada, Journal of Polymer Science Part A‐2: Polymer Physics 1971, 9, 161.
[6] 朱建國, 電子工程, 電子與光電子材料, 新文京開發, 2002.
[7] S. Minne, S. Manalis, C. Quate, Applied Physics Letters 1995, 67, 3918.
[8] A. A. Vives, Piezoelectric transducers and applications, Vol. 200, Springer, 2008.
[9] S. R. Anton, H. A. Sodano, Smart Materials and Structures 2007, 16, R1.
[10] B. Ameduri, Chem. Rev 2009, 109, 6632.
[11] K. El-Hami, A. Ribbe, S. Isoda, K. Matsushige, Chemical engineering science 2003, 58, 397; H.-M. Bao, C.-L. Jia, C.-C. Wang, Q.-D. Shen, C.-Z. Yang, Q. Zhang, Applied Physics Letters 2008, 92, 042903; S. Guo, C. Sun, T. Wu, X. Zhao, H. L. Chan, Journal of materials science 2007, 42, 1184.
[12] Building blocks II: ferroelectric P(VDF-co-TrFE) copolymer nanotubes.
[13] W.-C. Chang, A.-B. Wang, C.-K. Lee, H.-L. Chen, W.-C. Ko, C.-T. Lin, "Development of a photoconductive piezoelectronic material from composite of P (VDF-TrFE) and TiOPc", presented at Applications of Ferroelectrics held jointly with 2012 European Conference on the Applications of Polar Dielectrics and 2012 International Symp Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (ISAF/ECAPD/PFM), 2012 Intl Symp, 2012.
[14] R. Phillips, Crystals, defects and microstructures: modeling across scales, Cambridge University Press, 2001.
[15] M. O. Steinhauser, Computational Multiscale Modeling of Fluids and Solids, Vol. 60, Springer, 2008.
[16] Y. J. Park, S. J. Kang, B. Lotz, M. Brinkmann, A. Thierry, K. J. Kim, C. Park, Macromolecules 2008, 41, 8648.
[17] J. F. Nye, Physical Properties of Cristals: Their Representation by Tensors and Matrices, Oxford University Press, 1985.
[18] T. Furukawa, Phase Transitions: A Multinational Journal 1989, 18, 143.
[19] A. J. Lovinger, Science 1983, 220, 1115.
[20] A. J. Lovinger, Macromolecules 1981, 14, 322.
[21] W.-Y. Chang, T.-H. Fang, S.-Y. Liu, Y.-C. Lin, Materials Science and Engineering: A 2008, 480, 477.
[22] P. Ingram, H. Kiho, A. Peterlin, "The morphology of fibers from deformed polymer crystals", presented at Journal of Polymer Science Part C: Polymer Symposia, 1967.
[23] D. M. Esterly, B. J. Love, Journal of Polymer Science Part B: Polymer Physics 2004, 42, 91.
[24] S. Satapathy, S. Pawar, P. Gupta, K. Varma, Bulletin of Materials Science 2011, 34, 727.
[25] Z.-Y. Cheng, V. Bharti, T.-B. Xu, H. Xu, T. Mai, Q. Zhang, Sensors and Actuators A: Physical 2001, 90, 138.
[26] D. A. Skoog, D. M. West, Principles of instrumental analysis, Saunders College Philadelphia, 1980.
[27] G. Davis, J. McKinney, M. Broadhurst, S. Roth, Journal of Applied Physics 1978, 49, 4998.
[28] 陳信龍, 鄭有舜, 科儀新知 2007, 7.
[29] H. Cole, Journal of Applied Crystallography 1970, 3, 405.
[30] 張正祥, 黃清鄉, 鄭子英, 黃光治, 鄭伯昆, 物理雙月刊 1993, 15, 758.
[31] K.-C. Liu, C.-M. Cheng, C.-L. Chen, K.-D. Tsuei, D.-A. Luh, 2009.
[32] http://www.sinocera.net/en/sensor_d33.asp
[33] L. Seminara, L. Pinna, M. Capurro, M. Valle, 2012.
[34] Y. Takahashi, Y. Matsubara, H. Tadokoro, Macromolecules 1983, 16, 1588; M. Bachmann, W. Gordon, S. Weinhold, J. Lando, Journal of Applied Physics 1980, 51, 5095; M. Durbin, E. Jacobs, J. Hicks, S.-E. Park, Applied physics letters 1999, 74, 2848.
[35] J. Elmer, T. Palmer, E. D. Specht, Materials Science and Engineering: A 2007, 459, 151.
[36] W. Kraus, G. Nolze, Journal of Applied Crystallography 1996, 29, 301.
[37] B. H. Toby, R. B. Von Dreele, Journal of Applied Crystallography 2013, 46, 544.