跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃絜詠
Jie-Yung Huang
論文名稱:
Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces
指導教授: 羅夢凡
Meng-Fan Luo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 96
語文別: 英文
論文頁數: 80
中文關鍵詞: 穿隧電子顯微儀鈷奈米團簇傾斜表面氧化鋁薄膜
外文關鍵詞: Co nanocluster, vicinal surface, Al2O3, STM
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文我們利用金屬自主性排列方式,方便地組成金屬奈米線綜合體。我們採用 NiAl(100)平面往 [010] 方向傾斜小角度得到階梯表面,此樣品經由氧化過程,得到有序氧化鋁薄膜區域,在此區域中有突起的結構會沿著 [001] 方向,且它的長度可以到微米尺度。而進一步地利用氣相沉積方法,將鈷奈米團簇成長在氧化鋁薄膜上,而鈷奈米團簇會優先依著有序氧化鋁薄膜區域的突起結構來排列( 沿著 [001] 方向來延展 ),然後得到一維奈米金屬線,其寬度小於三奈米、長度高達至微米尺度。


    We present a simple, self-organized approach for synthesis of arrays of supported metal nanowires. By oxidizing NiAl surfaces vicinal to the (100) plane titled along the crystallographic direction [010], we produce ordered θ-Al2O3 thin-films exhibiting highly uniform protrusion stripes which propagate uniquely in crystallographic direction [001] of the NiAl and attain length of micrometer-scale. These protrusions are preferential nucleation centres for vapor-deposited metal; the nanoclusters grown from vapor-deposited metal are thus aligned and form one-dimensional arrays along the [001] direction. The Co cluster arrays form readily nanowires with a width as small as 3 nm and length up to micrometers.

    Abstract in Chinese.......................................i Abstract.................................................ii Acknowlegments .........................................iii Contents ................................................iv List of Figures..........................................vi List of Tables ...........................................x Chapter1 Introduction.....................................1 Chapter2 Literature Survey ...............................4 2.1 Properties of NiAl..................................4 2.2 Phases of Al2O3 grown on NiAl.......................6 2.3 Co nanoclusters deposited on Al2O3/NiAl(100) ......12 2.4 Vicinal surfaces...................................15 Chapter3 Experimental Instrument and Procedures..........17 3.1 Ultrahigh Vacuum (UHV) System......................17 3.1.1 Introduction of vacuum.........................17 3.1.2 UHV System.....................................17 3.1.3 Experimental Instruments.......................20 3.2 Scanning Tunneling Microscopy (STM) ...............24 3.2.1 Principle of STM ..............................24 3.2.2 Operation of STM...............................27 3.2.3 RHK-300 STM in experiment......................29 3.2.4 Preparing the STM tips.........................33 3.3 Low Energy Electron Diffraction (LEED).............35 3.3.1 Principle of LEED..............................35 3.3.2 Setup of LEED..................................37 3.4 Experimental Procedures............................38 3.4.1 Cleaning surface of vicinal NiAl(100) .........38 3.4.2 Exposure oxygen on the clean vicinal NiAl(100).39 3.4.3 Deposition of Co vapor on Al2O3 grown on vicinal NiAl(100)......................................40 3.4.4 The measurement of STM and LEED................40 Chapter4 Results and Discussion..........................41 4.1 Cleaning NiAl(100) vicinal surfaces ...............41 4.1.1 Clean surface of NiAl(23,2,0) .................41 4.1.2 Clean surface of NiAl(38,1,0) .................43 4.2 Exposure oxygen on NiAl vicinal surfaces...........44 4.2.1 Exposure oxygen on NiAl(23,2,0)................44 4.2.2 Exposure oxygen on NiAl(38,1,0) ...............51 4.3 Deposition of Co vapor on Al2O3/ NiAl(100) vicinal surfaces...........................................58 4.3.1 Deposition of Co vapor on Al2O3/ NiAl(23,2,0)..58 4.3.2 Deposition of Co vapor on Al2O3/ NiAl(38,1,0)..61 Chapter5 Conclusion and Future Work......................63 Reference................................................64

    [1] B.J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel and C. J. Foxon, Phys. Rev. Lett. 60 (1988) 848
    [2] P. Gambardella, M. Blanc, H. Brune, K. Kuhnke, and K. Kern, Phys. Rev. B 61 (2000) 2254
    [3] Bingqian Xu, Xiaoyin Xiao, and Nongjian J. Tao, J. Am. Chem. Soc. 125 (2003) 16164
    [4] Benjamin J. Murray, Erich C. Walter, and Reginald M. Penner, Nano Lett. 4 (2004) 665
    [5] Albert Bogozi, Osvaldo Lam, Huixin He, Chunzeng Li, Nongjian J. Tao, Larry A. Nagahara, Islamshah Amlani, and Raymond Tsui, J. Am. Chem. Soc. 123 (2001) 4585
    [6] Xinping Zhang, Baoquan Sun, Richard H. Friend, Hongcang Guo, Dietmar Nau, and Harald Giessen, Nano Lett. 6 (2006) 651
    [7] N. Garcia, E. V. Ponizowskaya, Hao Zhu, John Q. Xiao, A. Pons, Appl. Phys. Lett. 82 (2003) 3147
    [8] Qiaobing Xu, Jiming Bao, Federico Capasso, and George M. Whitesides, Angew.Chem. Int. Ed. 45 (2006) 3631
    [9] P. Gambardella, Ž. ˇ Sljivanˇcanin, B. Hammer, M. Blanc, K. Kuhnke,and K. Kern,Phys. Rev. Lett. 87 (2001) 056103
    [10] Robert W. Kelsall, Ian W. Hamley, and Mark Geoghegan, Nanoscale Science and Technology, John Wiley & Sons Ltd,2005
    [11] J. J. McClelland, R. E. Scholten, E. C. Palm, R. J. Celotta, Science 262 (1993) 877
    [12] C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo,L. Couraud, H. Launois, Appl. Surf. Sci. 164 (2000) 111
    [13] J. Jorritsmay, M. A M. Gijs, J. M. Kerkhof, and J.G. H. Stienen, Nanotechnol. 7 (1996) 263
    [14] D. Natelson, R. L. Willett, K.W. West, and L. N. Pfeiffer, Phys. Rev. Lett. 86 (2001) 1821
    [15] Nicholas A. Melosh, Akram Boukai, Frederic Diana, Brian Gerardot, Antonio Badolato, Pierre M. Petroff, James R. Heath, Science 300 (2003) 112
    [16] C. E. Cross, J. C. Hemminger, and R. M. Penner, Langmuir 23 (2007) 10372
    [17] Wen-Chin Lin, Chien-Cheng Kuo, Meng-Fan Luo, Ker-Jar Song, Appl. Phys. Lett. 86 (2005) 043105
    [18] M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale and C.C.Kuo, Nanotechnology 17 (2006) 360
    [19] Shrikrishina D. Sartale, Ku-Liang Lin, Chou-I Chiang, Meng-Fan Luo, Chien-Cheng Kuo, Appl. Phys. Lett. 89 (2006) 063118
    [20] Ralf-Peter Blum, Dirk Ahlbehrendt, Horst Niehus, Surf. Sci. 396 (1998) 176
    [21] Nicolas Fremy, Vincent Maurice, and Philippe Marcus, J. Am. Ceram. Soc., 86 (2003) 669
    [22] M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci.600 (2006) 1942
    [23] 張世勳, Growth of oxide on NiAl(100) and its interaction with Au,2006
    [24] R. Franchy, Surf. Sci. Rep. 38 (2004) 195
    [25] D.R. Mullins and S.H. Overbury, Surf. Sci. 199 (1988) 141
    [26] Ralf-Peter Blum, Dirk Ahlbehrendt, Horst Niehus, Surf. Sci. 366 (1996) 107
    [27] R.-P. Blum, H. Niehus, Appl. Phys. A 66 (1998) S529
    [28] J.L. Erskine, R.L. Strong, Phys. Rev. B 25 (1982) 5547
    [29] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319 (1994) 95
    [30] L.B. Avdeeva, D.I. Kochubey, Sh.K. Shaikhutdinov, Appl. Cata. A General 177 (1999) 43
    [31] T. Hill, M. Mozaffari-Afshar, J. Schmidt, T. Risse, S. Stempel, M. Heemeier, H. –J. Freund, Chem. Phys. Lett. 292 (1998) 524
    [32] T. Hill, T. Risse, H. –J. Freund, J. Chem. Phys. 122 (2005) 164704
    [33] V. Podgursky, I. Costina, R. Franchy, Surf. Sci. 529 (2003) 419
    [34] M.S. Zei, Surf. Sci. 601 (2007) 858
    [35] Marcus B¨aumer, Hans-Joahim Freund, Prog. Surf. Sci. 61 (1999) 127
    [36] M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, T. Y. Wang, P.L.Chen, and C.C. Kuo, J. Chem. Phys. 124 (2006) 164709
    [37] John B. Hudson, Surface Science An Introduction, Wiley Interscience,1998
    [38] K Kuhnke and K Kern, J. Phys: Condens. Matter 15 (2003) S3311
    [39] M. Henzler, Appl. Phys. 9 (1976) 11
    [40] J. Schoiswohl, F. Mittendorfer, S. Surnev, M. G. Ramsey, J. N. Andersen, F. P. Netzer, Surf. Sci. 600 (2006) L274
    [41] Stefan Ulrich, Niklas Nilius, Hans-Joachim Freund, Surf. Sci. 601 (2007) 4603
    [42] Luca Gavioli, Mattia Fanetti, Massimo Sancrotti, and Maria Grazia Berri, Phys. Rev. B 72 (2005) 035458
    [43] F. J. Himpsel and J. E. Ortega, Phys. Rev. B 50 (1994) 4992
    [44] P. Gambardella, M. Blanc, L. Bu rgi, K. Kuhnke, K. Kern, Surf. Sci. 449 (2000) 93
    [45] J. S. Ozcomert, W. W. Pai, N.C. Bartelt, and J. E. Reutt-Robey, Phys. Rev. Lett. 72 (1994) 258
    [46] J.-L. Lin, D. Y. Petrovykh, A. Kirakosian, H. Rauscher, and F. J. Himpsel, Appl. Phys. Lett. 78 (2001) 829
    [47] N. Néel, J. Kröger, and R. Berndt, Appl. Phys. Lett. 88 (2006) 163101
    [48] J. de la Figuera, M. A. Huerta-Garnica, J. E. Prieto, C. Ocal, and R. Miranda, Appl. Phys. Lett. 66 (1995) 1006
    [49] D.J. O’Connor, B.A. Sexton, R.St.C. Smart (Eds.), Surface Analysis Methods in Materials Science, Springer,2003
    [50] Ashley H. Carter, Classical and Statistical Thermodynamics, Prentice Hall,2001
    [51] 真空技術與應用(Vacuum Technology & Application), 行政院國家科學委員會精密儀器發展中心出版,2002
    [52] SPECS, surface analysis and computer technology
    [53] H. Lüth, Surfaces and Interfaces of Solids, Springer-Verlag,1993
    [54] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Appl. Phys. Lett. 40 (1982) 178
    [55] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49 (1982) 57
    [56] C. Julian Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press,1993
    [57] D. Drakova, Rep. Prog. Phys. 64 (2001) 205
    [58] User’s guide of RHK-UHV300
    [59] Doo-In Kim and Hyo-Sok Ahn, Rev. Sci. Instrum. 73 (2002) 3
    [60] J. P. Ibe, P. P. Bey, Jr., S. L. Brandow, R.A. Brizzolara, N.A. Burnham, D. P. DiLella, K.P. Lee, C. R. K. Marrian, and R. J. Colton, J. Vac.Sci.Technol.A 8 (1990) 4
    [61] Gary Attard and Colin Barnes, Surfaces, Oxford University Press,1998
    [62] Shangjr Gwo, Chung-Pin Chou, Chung-Lin Wu, Yi-Jen Ye, Shu-Ju Tsai, Wen-Chin Lin, and Minn-Tsong Lin, Phys. Rev. Lett. 90 (2003) 185506

    QR CODE
    :::