| 研究生: |
吳修銘 Hsiu-Ming Wu |
|---|---|
| 論文名稱: |
高功率P型氮化鎵閘極氮化鎵異質場效電晶體動態特性之研究 Investigation of the Dynamic Characteristics of High Power p-GaN Gate AlGaN/GaN HEMTs |
| 指導教授: |
綦振瀛
Jen-Inn Chyi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 氮化鎵 、動態特性 、電晶體 |
| 外文關鍵詞: | GaN, Dynamic Characteristics, HEMTs |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今商用增強型(E-mode)高功率氮化鎵異質場效電晶體中,p型氮化鎵閘極是常用的閘極結構之一,此閘極對元件開關時的動態特性影響以及與可靠度的關聯性是必須要了解的重要研究課題。 本論文之研究內容是針對p型氮化鎵閘極高電子遷移率電晶體,測量元件在施加閘極應力過程與之後的特性,並分析其動態特性與電荷陷捕行為之關聯。
過去的文獻報導,氮化鎵高電子遷移率電晶體之閘極經過導通偏壓(on state)後,因載子陷捕效應,會造成元件發生臨界電壓偏移或是動態電阻上升等問題。本研究經由分析臨界電壓偏移在受閘極應力後隨著時間回復的行為,判斷這是由兩種載子遷移機制所導致。第一種為電子陷捕機制,其恢復時間常數較短;而另一種為電洞陷捕機制,其恢復時間常數較長。除了臨限電壓偏移的觀察以外,元件在高閘極偏壓(7V)後切換至關閉狀態時,汲極關閉電流會隨著閘極應力的時間而增加,這可能是有陷補電洞而誘導出更多通道電子所導致。根據電流暫態變化所萃取之活化能以及能帶模擬的結果推估,陷捕電子的陷補能階位置約莫在氮化鋁鎵位障層導電帶下方0.45 eV的位置,而陷捕電洞的陷捕能階約在p型氮化鎵或者氮化鋁鎵位障層價電帶上方0.54 eV的位置。
Normally off p-GaN gate AlGaN/GaN HEMTs have gained increasing popularity in power switching applications since their commercial availability. However, device reliability and stability reflected in dynamic characteristics are still of great concern. This work is aimed at analyzing the dynamic characteristics and charge trapping behavior of this p-GaN gate AlGaN/GaN HEMTs under the gate stress.
The effects of on-state stresses on the dynamic behaviours of devices have been explored to correlate the device characteristics and the trapping behavior in the device. A significant change in Vth due to different on-state gate stresses is observed. ∆Vth transient analysis reveals two different mechanisms responsible for the change of Vth. On-state stress below 7V causes positive ∆Vth, indicating electron trapping with a shorter recovery time constant and hole trapping mechanism with a longer recovery time constant as observed by the negative shift in Vth after a 7V on-state stress. In addition to the change in Vth, the off-state Id increases with the on-state stress time at 7V. This is attributed to the presence of trapped holes, which induce excess electrons in the channel to maintain charge neutrality and hence the off state drain current. According to the activation energy obtained by the drain current transient measurements, an apparent electron trap energy level of 0.45 eV below the AlGaN barrier conduction band and a hole trap energy level of about 0.54 eV above the p-GaN or AlGaN valence band are estimated.
[1] B. J. Baliga, "Power semiconductor device figure of merit for high-frequency applications," IEEE Electron Device Letters, vol. 10, pp. 455-457, 1989.
[2] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, pp. 3222-3233, 1999.
[3] K. J. Chen, O. Haberlen, A. Lidow, C. l. Tsai, T. Ueda, Y. Uemoto, and Y.Wu., "GaN-on-Si Power Technology: Devices and Applications," IEEE Transactions on Electron Devices, vol. 64, pp. 779-795, 2017.
[4] T. Oka and T. Nozawa, "AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications," IEEE Electron Device Letters, vol. 29, pp. 668-670, 2008.
[5] C. Yong, Z. Yugang, K. J. Chen, and K. M. Lau, "High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment," IEEE Electron Device Letters, vol. 26, pp. 435-437, 2005.
[6] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T.Ueda,T.Tanaka,D.Ueda, "Gate Injection Transistor (GIT)—A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation," IEEE Transactions on Electron Devices, vol. 54, pp. 3393-3399, 2007.
[7] X. Huang, Z. Liu, Q. Li, and F. C. Lee, "Evaluation and application of 600V GaN HEMT in cascode structure," Applied Power Electronics Conference and Exposition (APEC), pp. 1279-1286, 2013.
[8] M. Tapajna, O. Hilt, E. Bahat-Treidel, J. Wurfl, and J. Kuzmik, "Gate Reliability Investigation in Normally-Off p-Type-GaN Cap/AlGaN/GaN HEMTs Under Forward Bias Stress," IEEE Electron Device Letters, vol. 37, pp. 385-388, 2016.
[9] G. Meneghesso, M. Meneghini, I. Rossetto, E. Canato, J. Bartholomeus, C. De Santi, N. Trivellin, and E. Zanoni., "GaN HEMTs with p-GaN gate: field- and time-dependent degradation," Proc. SPIE, Gallium Nitride Materials and Devices XII(2017), 1010419
[10] A. N. Tallarico, S. Stoffels, P. Magnone, N. Posthuma, E. Sangiorgi, S. Decoutere, and C.Fiegna, "Investigation of the p-GaN Gate Breakdown in Forward-Biased GaN-Based Power HEMTs," IEEE Electron Device Letters, vol. 38, pp. 99-102, 2017.
[11] Y. Shi, Q. Zhou, Q. Cheng, P. Wei, L. Zhu, D. Wei, A. Zhang, Wanjun Chen, and Bo Zhang, "Bidirectional threshold voltage shift and gate leakage in 650 V p-GaN AlGaN/GaN HEMTs: The role of electron-trapping and hole-injection, Proc. 30th ISPSD, pp. 96-99, 2018.
[12] X. Tang, B. Li, H. A. Moghadam, P. Tanner, J. Han, and S. Dimitrijev, "Mechanism of Threshold Voltage Shift in p-GaN Gate AlGaN/GaN Transistors," IEEE Electron Device Letters, vol. 39, pp. 1145-1148, 2018.
[13] M. J. Anand, G. I. Ng, S. Arulkumaran, B. Syamal, and X. Zhou, "Distribution of trap energy level in AlGaN/GaN high-electron-mobility transistors on Si under ON-state stress," Applied Physics Express, vol. 8, p. 104101, 2015.
[14] F. Calle, E. Monroy, F. J. Sánchez, E. Muñoz, B. Beaumont, S. Haffouz, M. Leroux and Pierre, "Analysis of the Visible and UV Electroluminescence in Homojunction GaN LED"s," MRS Internet Journal of Nitride Semiconductor Research, vol. 3, pp.e24 ,1998.
[15] S. Stoffels, S. Lenci, B. Bakeroot, R. Venegas, G. Groeseneken, and S. Decoutere., "Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode," Applied Physics Letters, vol. 106, p. 083502, 2015.
[16] Z. Zhang, A. R. Arehart, E. C. H. Kyle, J. Chen, E. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, J. S. Speck, and S. A. Ringel, "Proton irradiation effects on deep level states in Mg-doped p-type GaN grown by ammonia-based molecular beam epitaxy," Applied Physics Letters, vol. 106, p. 022104, 2015.
[17] T. Narita , Y. Tokuda, T. Kogiso, K. Tomita, and T. Kachi.,"The trap states in lightly Mg-doped GaN grown by MOVPE on a freestanding GaN substrate," Journal of Applied Physics, vol. 123, p. 161405, 2018.