跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐永清
Xiu-Yuon Qien
論文名稱: 大型電力變壓器之靜動態分析及安全評估
指導教授: 潘敏俊
Min-Chun Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 92
中文關鍵詞: 變壓器套管壓力容器抭震有限元素
外文關鍵詞: Transformer, Bushing, Pressure vessel
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在921大地震發生後,造成全台大停電,引起國人對大型電器設備耐震能力及靜動態安全性的關心。本文旨在以有限元素法來分析大型變壓器本體之靜態負荷能力及變壓器的結構耐震強度。變壓器本體內裝絕緣油,於其靜態負荷能力分析中,使用薄殼元素來作結構模擬,並輔以壓力容器應變量測實驗之佐證;在耐震之動態分析中,考慮分析之完整性,使用3D的模型來作地震的模擬分析。
    大型電力變壓器之本體在注入絕緣油前,要先把空氣抽出,使得內壓低於外界大氣壓力15 psi,且變壓器的本體為一薄板箱體,故於靜態分析中,補強肋加強方式對整個變壓器本體的真空強度有重要的影響,在數值分析結果與實驗結果的比對上,是以縮小模型的實驗來做比對。在耐震強度分析方面,首先進行模態分析,獲得結構物的振動模態及共振頻率,了解結構物之相關振動特性後,並根據耐震規範JEC183,輸入一設計地震波激振,評估其安全性。
    在靜態特性方面之數值分析顯示,變壓器本體原結構設計之強度已達安全標準;而在安全的原則下,繼續進行結構輕量化之設計修改,可使變壓器本體減重12%。此外,原設計的變壓器耐震分析無法通過JEC183的規範,經過適當設計修改後,可有效地將變壓器套管結構共振頻率提高55%,並達到規範的要求。
    大型電力變壓器之造價高昂,且其損壞對民生及工業電力供應影響甚大;本研究已對大型電力變壓器結構強度及耐震分析等安全評估之相關工作建立一通用模式,期使能確立此等大型結構件之設計準則。


    摘要 --------------------------------------------------------I 誌謝 -------------------------------------------------------II 目錄 ------------------------------------------------------III 圖目錄 -----------------------------------------------------VI 表目錄 ------------------------------------------------------X 一、緒論 ----------------------------------------------------1 1.1 研究動機與背景 ------------------------------------------1 1.2 研究方法回顧 --------------------------------------------2 1.3 本文研究範疇 --------------------------------------------5 二、理論基礎 ------------------------------------------------7 2.1 壓力容器分析 --------------------------------------------7 2.2 銲接結構之強度 -----------------------------------------10 2.3 應變規原理 ---------------------------------------------13 2.4 振動分析 -----------------------------------------------17 2.5 ANSYS®數值分析理論 ------------------------------------19 2.5.1 靜態分析 ---------------------------------------------19 2.5.2 模態分析 ---------------------------------------------21 2.5.3 暫態分析 ---------------------------------------------22 三、靜態分析 -----------------------------------------------26 3.1 壓力容器應變場量測實驗 ---------------------------------26 3.1.1 不具加強肋之實驗規劃 ------------------------------26 3.1.2 具加強肋之實驗規劃 --------------------------------29 3.1.3 實驗步驟 ------------------------------------------33 3.2 壓力容器應變分布量測實驗結果 ---------------------------33 3.2.1未具加強肋應變測結果 ----------------------------------33 3.2.2具加強肋應變量測結果 ----------------------------------34 3.3 數值分析 ---------------------------------------------35 3.3.1 不具加強肋壓力容器應變分析比對 ----------------------36 3.3.2 具加強肋壓力容器應變分析比對 ------------------------39 3.3.3 345kV變壓器之本體結構強度分析 -----------------------42 四、動態分析 -----------------------------------------------44 4.1 集中質法量動態分析 ------------------------------------44 4.2 3D實體動態分析 ----------------------------------------49 4.2.1 建立分析模型 -----------------------------------------50 4.2.2 模態分析 ---------------------------------------------53 4.2.3 共振分析 ---------------------------------------------55 五、設計修改 -----------------------------------------------58 5.1 變壓器本體結構輕局部量化設計----------------------------58 5.1.1 設計變數 ------------------------------------------58 5.1.2 安全評估 ------------------------------------------62 5.2 變壓器套管與套管座自然頻率提升設計 ---------------------67 5.2.1 修改參數 ------------------------------------------68 5.2.2 設計修改之模態分析 ----------------------------------74 5.2.3 設設修改之外力激振分析 ------------------------------76 5.3 設計修改總結 -------------------------------------------80 六、結論與建議 ---------------------------------------------81 附錄 1 材料拉伸試驗 ----------------------------------------83 附錄 2 集中質量法與實體之力矩差異 --------------------------86 參考文獻 ---------------------------------------------------901.Ballerina, S., Bettinali, F., Salvetti, M., Zafferani, G. (1998), Seismic Qualification of Transformer High Voltage Bushings, IEEE Transactions on Power Delivery, Vol. 13, No. 4, October. 2.Bargigia, A., Salvetti, M., Vallino, M. (1993), An In Progress On seismic Qualification Of Gas Insulated Substations, IEEE Transactions on Power Delivery, Vol. 8,

    1.Ballerina, S., Bettinali, F., Salvetti, M., Zafferani, G.
    (1998), Seismic Qualification of Transformer High Voltage
    Bushings, IEEE Transactions on Power Delivery, Vol. 13, No.
    4, October.
    2.Bargigia, A., Salvetti, M., Vallino, M. (1993), An In
    Progress On seismic Qualification Of Gas Insulated
    Substations, IEEE Transactions on Power Delivery, Vol. 8,
    No.1, January.
    3.Blach, A. E., Hoa, V. S., Kwok, C. K., Ahmed, A. K. W.
    (1990), Rectangular Pressure Vessels of Finite Length,
    Journal of Pressure Vessel Technology, Vol. 112.
    4.Chandrasekaran, A. R., Singhal, N. C. (1984), Earthquake
    Resistance Capability of Voltage Transformer, Journal of
    Energy Engineering, Vol. 110, No. 1, march.
    5.Dinkevich, S., Feng, T., Feldshteyn, Y., Khan, M. Z. (1994),
    Structural Analysis of The TPX Vacuum Vessel For The
    Conceptual design, Fusion Engineering, 1993,15eh IEEE/NPSS
    symposium, Volume 1.
    6.Dally, James W., Riley, w. F. (1991), Experimental stress
    analysis, 3rd Ed, McGraw-Hill, New York.
    7.Fan, H. M., Ono, M., Sheffield, G., Bialek, J., Robinson, J.
    (1995), Conceptual Analysis and Design of NSTX Vacuum Vessel
    and Support Structures, Fusion Engineering, SOFE’95, Vol. 2,
    1430-1433.
    8.Jones, B. K., Emery, A. F., Marburger, S. J. (1993), Design
    and Analysis of a Test Coupon for Fusion Welding, Journal of
    Pressure Vessel Technology, Vol. 115, February.
    9.Kobayashi, A. (2000), Murase, H., Toyoda, M., Shiiki, M.,
    Yamaguchi, M., Ogata, K., Development of 550kV-8000A
    Composite Insulator Gas Bushing, IEEE Power Engineering
    Society Winter Meeting, Vol. 3.
    10.Karamanos, S. A., Tassoulas, J. L. (1995), Stability of Ring-
    Stiffened Tubular Members Under External Pressure, Journal
    of Pressure Vessel Technology, Vol. 117, May.
    11.Lindgren, L.-E., McDill, J.M.J., Oddy, A.S. (1997),
    Automatic remeshing for three-dimensional finite element
    simulation of welding, Computer methods in applied mechanics
    and engineering 147, 401-409.
    12.Larder, R. A., Gallagher, R. P., Nilsson, B. (1989),
    Innovative Seismic Design Aspects of The Intermountain Power
    Project Converter Stations, IEEE Transactions on Power
    Delivery, Vol. 4 No. 3, July.
    13.Murata, M., Urzinger, M. B., Chen, D-H. Nistitani, H.
    (1995), Stress Analysis on Rectangular Cross-Sectional Ring
    Headers, Journal of Pressure Vessel Technology, Vol. 117,
    November.
    14.Moors, F. (1985), Seismic Behavior of Very High Voltage
    Current Transformers, IEEE Transaction on Power Apparatus
    and Systems, Vol. PAS-104, No. 1, January.
    15.Miyachi, I., Kawada, H., Shiomi, S., Saito, K., Kawamura,
    Y., akahashi, Y., Moriya, T. (1984), Seismic Analysis and
    Test on Transformer Bushing, International Conference on
    Large High Voltage Electric Systems.
    16.Sarkani, S., Tritchkov, V., Michaelov, G. (2000), An
    efficient approach for computing residual stresses in welded
    joints, Finite Elements in Analysis and Design 35, 247-268.
    17.Sun, W., Hyde, T.H., Becker, A.A., Williams, J.A. (2000),
    Comparison of the creep and damage failure prediction of the
    new, service-aged and repaired thick-walled circumferential
    CrMoV pipe welds using material properties at 640℃,
    International Journal of Pressure Vessels and Piping 77, 389-
    398.
    18.Szilard, R. (1974), Theory and Analysis of Plates, Prentice
    Hall, New Jersey.
    19.Spotts, M. F., Shoups, T. E. (1998), Design of Machine
    Elements, 7th Ed, Prentice Hall International, and New
    Jersey.
    20.Thuries, E., Girodet, A., Serres, E., Mees, F., Willieme,
    J.M. (1989), Seismic Behavior of “Candle” Type SF6 Outdoor
    Circuit Breakers and Associated SF6 Insulated Current
    Transformers, IEEE Transactions on Power Delivery, Vol.4,
    No. 4, October.
    21.Teng, T. L., Chang, P.H. (1998), Three-dimensional
    thermomechanical analysis of circumferentially welded thin-
    walled pipes, International Journal of Pressure Vessels and
    Piping 75, 237-247.
    22.Teng, T. L., Lin, C.C. (1998), Effect of welding conditions
    on residual stresses due to butt welds, International
    Journal of Pressure Vessels and Piping 75, 857-864.
    23.Yang, Y. -S., Lee, S. -H. (1997), A study on the mechanical
    stress relieving in butt-welded-pipe, International Journal
    of Pressure Vessels and Piping 73,175-182.
    24.日本電氣協會(1999),變電所等電氣設備之耐震對策指針,電氣技術指
    針發變電編, JEAG 5003.
    25.日本電氣協會(1998),送電用支持物設計標準JEC-183,日本電氣書院.
    26.日本土木學會耐震工學委員會(1989),動的解析與耐震設計,技報堂.
    27.錢偉長(1965),彈性力學,亞東書局.

    QR CODE
    :::