| 研究生: |
謝孟緯 Meng-wei Hsieh |
|---|---|
| 論文名稱: |
矽鍺異質接面雙極性電晶體在動態、功率與雜訊特性之研究 The Investigation of Dynamic, Power and Noise Characteristics on SiGe Heterojunction Bipolar Transistors |
| 指導教授: |
詹益仁
Yi-jen Chan |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 雜訊 、功率 、異質接面雙極性電晶體 、矽鍺 、低溫 |
| 外文關鍵詞: | cryogenic temperatures, power, noise, SiGe Heterojunction Bipolar Transistor, SiGe |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著先進製程的蓬勃發展,矽基板矽鍺異質接面雙極性電晶體的電流增益截止頻率已發展至350 GHz,而較低的製作成本、低溫環境的適應性、與金氧半場效電晶體的高整合性以及可將數位和類比電路整合於同一基板的優點使得矽鍺異質接面雙極性電晶體更有吸引力。由於基極厚度的持續變薄使其在高頻特性上獲得大幅的提升,因此矽鍺異質接面雙極性電晶體已被廣泛的建議並使用於無線收發電路。為了達到這些目標,一個準確的等效電路模型以及詳細的元件特性分析對電路設計者而言是非常重要的。
為了要找出最佳的元件佈局,我們研究了三個擁有相同集極面積與不同接點結構的0.18微米矽鍺異質接面雙極性電晶體的高頻與功率特性。並利用大訊號VBIC等效電路模型萃取出之成分來做傳輸延遲時間分析。經由分析矽鍺異質接面雙極性電晶體的傳輸延遲時間,我們可以得到一個具有較高電流增益截止頻率的元件佈局。這個最佳元件佈局也可產生最高的功率輸出,在操作頻率為2.4 GHz時,其最大輸出功率為6.4 dBm且轉換效率為40 %。
在此論文中我們也量測了矽鍺異質接面雙極性電晶體在不同溫度下的直流與微波特性,與溫度相關的直流、高頻與功率特性在此有詳盡的分析,利用分析傳輸延遲時間,我們可以發現矽鍺異質接面雙極性電晶體藉由縮短基極與射極傳輸延遲時間來得到較高在低溫時的電流增益截止頻率。此外,在高電壓型態元件中,當高注入效應產生時在射極-基極接面的價帶不連續面會產生一個寄生的導電帶能障,這個寄生的能障會縮小元件的電流增益與電流增益截止頻率並限制電流-電壓曲線的寬度,尤其是在低溫環境中,因此,所量測到的輸出功率、轉換效率與線性度都會隨著降溫明顯的下降,但此寄生能障效應不會在高速型態元件中產生,所以可以在低溫環境中發揮較佳的功率特性。
在這個研究中,我們也探討矽鍺異質接面雙極性電晶體在常溫與低溫環境中的低頻雜訊特性,經由比較高速與高電壓型態元件的1/f雜訊,高速元件中的高射極參雜會產生較高的雜質濃度並增加射極電流的1/f雜訊,此外,在高電壓型態元件中的寄生能障效應也會影響1/f雜訊,由於寄生能障效應在射極-基極接面產生大量的載子累積也產生了額外的基極複合電流,此複合電流提高了元件的低頻雜訊。
With the technological advances, the Si-based SiGe HBTs was already developed to over 350 GHz. The low cost of fabrication, high integration with CMOS process and the possibility of placing both analog and digital circuits on the same chip so as to improve the overall performance made SiGe BiCMOS technology attractive. The thin out of base layer improves the speed of HBTs significantly and hence the SiGe BiCMOS technologies have been widely recommended and used in wireless front-end transceiver for its high integration level, low cost, and good adaptability with cooling. To achieve these goals, the accurate device model and detailed device characteristics are important for the circuit designers.
In order to find out the optimal layout for rf properties, we investigated the high-frequency and power properties of three 0.18 um SiGe HBTs with different contact configurations and the same emitter area. The large-signal VBIC model is used to extract the equivalent components for the transit delay time analysis. By using the analysis of transit delay time for SiGe HBTs, we can obtain an optimal contact configuration layout to achieve higher cutoff frequency. Furthermore, regarding the maximum output power, the SiGe HBT with optimal layout provides highest of 6.4 dBm maximum output power and a PAE of 40 % at 2.4 GHz.
We also measured the dc and rf characteristic for npn SiGe HBTs with various temperatures. Detailed analyses of temperature-dependent on dc, high-frequency parameters, and power performances are presented. By analyzing the emitter-collector transit time, the temperature-dependent of cutoff frequency was characterized at different functionalities of SiGe HBTs to explain the improvement in fT with reducing the base and collector transit delay time at cryogenic temperature. Furthermore, in SiGe HBTs without SIC, the valance band discontinuity at base-collector heterojunction induces a parasitic conduction band barrier at the onset of high-injection effect. This parasitic conduction band barrier reduces the current gain and cutoff frequency and limit the broad of dc I-V curve significantly especially at cryogenic temperatures. Therefore, the measured output power, power-added efficiency and linearity at 2.4 GHz decrease significantly with decreasing operation temperatures. This heterojunction barrier effect in SiGe HBT with SIC is negligible and thus the device achieves better power performance at cryogenic temperatures compared with that in a SiGe HBT without SIC.
In this study, we investigated the low-frequency noise in SiGe HBTs at room and cryogenic temperatures. By comparing the magnitude of 1/f noise of the SiGe HBTs with and without SIC, we show that the impurities at the collector produced by the incomplete activation of the implanted ions cause an increase in the collector current 1/f noise spectrum. Thus, SiGe HBT with SIC exhibits higher collector noise current spectra due to the inactive ions in the collector. Furthermore, the HBE on SiGe HBT without SIC also influences the 1/f noise property at the onset of high-injection effect. The 1/f noise degrades due to the increasing of recombination base current which produced by the accumulation of carriers at the CB junction.
[1] M. R. Murti, J. Laskar, S. Nuttinck, S. Yoo, A. Raghavan, J. I. Bergman, J. Bautista, R. Lai, R. Grundbacher, M. Barsky, P. Chin, P. H. Liu, “Temperature-dependent small-signal and noise parameter measurements and modeling on InP HEMTs,” IEEE Trans. on Microwave Theory Tech., vol. 48, no. 12, pp. 2579-2587, Dec. 2000.
[2] N. Wadefalk, A. Mellberg, I. Angelov, M. E. Barsky, S. Bui, E. Choumas, R. W. Grundbacher, E. L. Kollberg, R. Lai, N. Rorsman, P. Starski, J. Stenarson, D. C. Streit, H. Zirath, “Cryogenic Wide-Band Ultra-Low-Noise IF Amplifiers Operating at Ultra-Low DC Power,” IEEE Trans. on Microwave Theory Tech., vol. 51, no. 6, pp. 1705-1711, June 2003.
[3] J. J. Bautista, J. G. Bowen, N. E. Fernandez, Z. Fujiwara, J. Loreman, S. Petty, J. L. Prater, R. Grunbacher, R. Lai, M. Nishimoto, M. R. Murti, J. Laskar, “Cryogenic, X-band and Ka-band InP HEMT based LNAs for the Deep Space Network,” in Proc. IEEE Aerospace Conference 2001, vol. 2 pp. 829-842, March 2001.
[4] K. Washio, “SiGe HBT and BiCMOS technologies,” in IEEE Electron Devices Meeting Tech. Dig., pp. 113-116, 2003.
[5] J. D. Cressler, D. D. L. Tang, and E. S. Yang, “Injection-Induced Bandgap Narrowing and Its Effects on the Low-Temperature Operation of Silicon Bipolar Transistor,” IEEE Trans. on Electron Devices, vol. 36, no. 11, pp. 2576-2586, November 1989.
[6] M. S. Peter, G. A. M. Hurkx, C. E. Timmering, “Selectively-Implanted Collector Profile Optimisation for High-Speed Vertical Bipolar Transistors,” in Proc. Solid-State Device Research Conference 1997, no. 27, pp. 308-311, Sep. 1997.
[7] R. H. Havemann, R. H. Eklund, “Process Integration Issues for Submicron BiCMOS Technology,” Solid State Technology, vol.35, pp. 71-76, June 1992.
[8] D. L. Harame, B. S. Meyerson, “The early history of IBM’s SiGe mixed signal technology,” IEEE Trans. on Electron Devices, vol. 48, pp. 2555-2567, 2001.
[9] B. Jagannathan, M. Khater, F. Pagette, J. S. Rieh, D. Angell, H. Chen, J. Florkey, F. Golan, “Self-aligned SiGe NPN transistors with 285 GHz fmax and 207 GHz fT in a manufacturable technology,” IEEE Electron Device Lett., Vol. 23, pp. 258-260, 2002.
[10] J. S. Rieh, D. Greenberg, B. Jagannathan, G. Freeman, S. Subbanna, “Measurement and modeling of thermal resistance of high speed SiGe heterojunction bipolar transistors,” in Silicon Monolithic Integrated Circuits in RF Systems Dig., pp. 110-113, Sept. 2001.
[11] J. D. Cressler, J. H. Comfort, E. F. Crabbe, G. L. Patton, J. M. C. Stork, J. Y. C. Sun, B. S. Meyerson, "On the Profile Design and Optimization of Epitaxial Si- and SiGe- Base Bipolar Technology for 77K Applications - Part I: Transistor DC Design Considerations," IEEE Trans. on Electron Devices, vol. 40, no. 3, pp. 525-541, March 1993.
[12] B. Senapati, C.K. Maiti, “Advanced SPICE modeling of SiGe HBTs using VBIC model,” in Proc. IEE Circuits Devices System 2002, vol. 149 no. 2, pp. 129-135, April 2002.
[13] G.W. Huang, K. M. Chen, J.F. Kuan, Y.M. Deng, S.Y. Wen, D.Y. Chiu, “Silicon BJT Modeling Using VBIC Model,” in Proc. IEEE APMC2001 , pp.240.243, 2001.
[14] G. M. Kull, L. W. Nagel, S. W. Lee, P. Lloyd, E. J. Prendergast, H. Dirks, “A unified circuit model for bipolar transistors including quasi-saturation effects,” IEEE Trans. on Electron Devices, vol. 32, no. 11, pp. 2415-2419, Nov. 1985.
[15] P. Weil, L. McNamee, “Simulation of excess phase in bipolar transistors,” IEEE Trans. on Circuit and Systems , vol. 25, no. 2, pp. 114-116, Feb. 1978.
[16] J. S. Rieh, M. Khater, G. Freeman, D. Ahlgren, “SiGe HBT Without Selectively Implanted Collector (SIC) Exhibiting fmax=310 GHz and BVCEO=2 V,” IEEE Trans. on Electron Devices, vol. 53, no. 9, pp. 2407-2409, Sept. 2006.
[17] H. Cho, D. Burk, “A three-step method for the de-embedding of high frequency S-parameter measurements,” IEEE Trans. on Electron Devices, vol. 38, pp. 1371-1375, 1991.
[18] M. Kahn, S. Blayac, M. Riet, Ph. Berdaguer, V. Dhalluin, F. Alexandre, J. Godin, “Measurement of Base and Collector Transit Times in Thin-Base InGaAs/InP HBT,” IEEE, Electron Device Lett., vol. 24 no. 7, pp. 430-432, July 2003.
[19] D. R. Greenberg, B. Jagannathan, S. Sweeney, G. Freeman, D. Ahlgren, “Noise performance of a low base resistance 200 GHz SiGe technology,” Tech. Digest IEDM 2002, pp. 787-790, 2002.
[20] D. Greenberg, S. Sweeney, G. Freeman, D. Ahlgren, “Low-noise performance near BVCEO in a 200 GHz SiGe technology at different collector design points,” IEEE MTT-S Int. Microwave Symp. Dig. 2003, pp. 113-116, 2003
[21] R. J. Hawkins, “Limitations of Nielson’s and related noise equations applied to microwave bipolar transistors, and a new expression for the frequency and current dependent noise figure, ” Solid-State Electron., vol. 20, pp. 191-196, 1977.
[22] Y. K. Chen, R. N. Nottenburg, M. P. Panish, R. A. Hamm, and D. A. Humphrey, “Microwave noise performance of InP/InGaAs heterostructure bipolar transistors,” IEEE Electron Device Letters., vol. 10, pp. 470-473, 1989.
[23] S. M. Sze, Physics of Semiconductor Devices. New York: Wiley, pp. 579-585, 1981.
[24] D. B. M. Klaassen, J.W. Slotboom and H. C. de Graaö, "Unified apparent bandgap narrowing in n- and p-type silicon," Solid State Electron., vol.35, pp. 125-129, 1992.
[25] E. F. Crabbe, J. D. Cressler, J. H. Comfort, G. L. Patton, J. M. C. Stork, J. Y. C. Sun, "Current Gain Rolloff in Graded-Base SiGe Heterojunction Bipolar Transistors," IEEE Trans. on Electron Devices, vol. 14, no. 4, pp. 193-195, April 1993.
[26] B. S. Meyerson, "Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition," Appl. Phys. Lett., vol.48, pp. 797-799, 1986.
[27] J. D. Cressler, D. D. Tang, K. A. Jenkins, G. P. Li, E. S. Yang, "On the low-temperatures static and dynamic properties of high-performance silicon bipolar transistors," IEEE Trans. on Electron Devices, vol. 36, no. 8, pp. 1489-1502, Aug. 1989.
[28] W. Liu, Handbook of III-V Heterojunction Bipolar Transistors, New York: J. Wiley & Sons, pp. 225-274, 1998.
[29] T. M. Burbaev, E. A. Bobrik, V. A. Kurbatov, M. M. Rzaev, N. N. Sibeldin, V. A. Tsvetkov, F. Schaffler, " Electron-hole liquid in strained SiGe layers of silicon heterostructures," JETP Lett., vol.85, no. 7, pp. 331-334, June 1986.
[30] D. L. Harame, J. M. C. Stork, B. S. Meyerson, E. F. Crabbe, G. L. Patton, G. J. Scilla, E. de Fresart, A. A. Bright, C. Stanis, A. C. Megdanis, M. P. Manny, E. J. Petrillo, M. Dimeo, R. C. McIntosh, K. K. Chan, “SiGe-base PNP transistors fabricated with n-type UHV/CVD LTE in a `No Dt'' process,” in Proc. IEEE Symp. VLSI Technology 1990, pp. 47-48, June 1990.
[31] J. S. Yuan, J. Song, “Base-collector heterojunction barrier effect of the SiGe HBT at high current densities,” in Proc. IEEE Electron Devices Meeting 1998, pp.101-104, Aug. 1998.
[32] A. J. Joseph, J. D. Cressler, D. M. Richey, D. L. Harame. “Impact of profile shape on the high-injection barrier effects in advanced UHV/CVD SiGe HBTs,” in IEEE Electron Devices Meeting 1996 Tech. Dig., pp. 253-256, 1996.
[33] W. M. Webster, “On the variation of junction transistor current-amplification factor with emitter current,” Proc. IRE, vol. 42, pp. 914-920, Jun. 1954.
[34] E. S. Rittner, “Extension of the theory of the junction transistor,” Phys. Rev., vol. 94, no. 5, pp. 1161-1171, Jun. 1954.
[35] B. Mazhari, H. Morkoc, “Effect of Collector-Base Valance Band Discontinuity on Kirk Effect in Double Heterojunction Bipolar Transistor,” Appl. Phys. Lett., vol. 59, no. 17, pp. 2162-2164, Oct. 1991.
[36] J. W. Slotboom, G. Streutker, A. Pruijmboom, D. J. Gravesteijn, “Parasitic energy barriers in SiGe HBTs, ” IEEE Electron Device Lett., Vol. 12, pp. 486-488, Sept. 1991.
[37] M. W. Hsieh, Y. M. Hsin, K. H. Liang, Y. J. Chan, D. Tang, "RF Power Characteristics of SiGe HBTs at Cryogenic Temperatures," IEEE Trans. on Electron Devices, vol. 53, no. 6, pp. 1452-1458, June 2006.
[38] E. O. Johnson, “Physical limitations on frequency and power parameters of transistors,” RCA Rev., pp. 163-177, 1965.
[39] S. Tiwari, “A new effect at high currents in heterostructure bipolar transistors,” IEEE Electron Device Lett., Vol. 9, pp. 142-144, March 1988.
[40] S. Tiwari, “Analysis of the operation of GaAlAs/GaAs HBTs,” IEEE Trans. on Electron Devices, vol. 36, pp. 2105-2121, 1989.
[41] A. J. Joseph, J. D. Cressler, D. M. Richey, G. Niu, “Optimization of SiGe HBTs for operation at high current densities,” IEEE Trans. on Electron Devices, vol. 46, no. 7, pp. 1347-1354, July 1999.
[42] Q. Liang, J. D. Cressler, G. Niu, R. M. Malladi, K. Newton, D. L. Harame, “A physics-based high-injection transit-time model applied to barrier effects in SiGe HBTs,” IEEE Trans. on Electron Devices, vol. 49, no. 10, pp. 1807-1813, Oct. 2002.
[43] M. Y. Frankel, D. Pavlidis, “Large-signal modeling and study of power saturation mechanisms in heterojunction bipolar transistors,” in IEEE MTT-S Int. Microwave Symp. 1991 Dig., Vol. 1, pp. 127-130, June 1991.
[44] G. B. Gao, H. Morkoc, M. C. Frank, “Heterojunction bipolar transistor design for power applications,” IEEE Trans. on Electron Devices, vol. 39, no. 9, pp. 1987-1997, Sept. 1992.
[45] M. W. Hsieh, K. H. Liang, C. Y. Lee, G. J. Chen, D. L. Tang, Y. J. Chan, “The high frequency and power performance of SiGe HBTs with SIC structure at cryogenic temperature,” IEEE MTT-S Int. Microwave Symp. 2005 Dig., pp. 2239-2249, June 2005.
[46] W. Kim, M. Chung, K. Lee, Y. Yang, S. Kang, B. Kim, “The effects of nonlinear CBC on the linearity of HBT,” Microwave Conference, 2000 Asia-Pacific, pp. 875-879, Dec. 2000.
[47] A. Hajimiri, T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuit, vol. 33, pp. 179-194, Feb. 1998.
[48] K. Washio, “SiGe HBT and BiCMOS technologies,” in IEEE Electron Devices Meeting Tech. 2003 Dig., pp. 113-116, 2003.
[49] E. Zhao, R. Krithivasan, A. K. Sutton, Z. Jin, J. D. Cressler, B. El-Kareh, S. Balster, H. Yasuda, “An Investigation of Low-Frequency noise in Complementary SiGe HBTs,” IEEE Trans. on Electron Devices, vol. 53, no. 2, pp. 329-338, Feb. 2006.
[50] J. Kilmer, A. V. D. Ziel, and G. Bosman, “Presence of Mobility-Fluctuation 1/f Noise Identified in Silicon P+NP Transistor,” Solid-State Electronics, vol. 26, No. 1, pp. 71-74, 1983.
[51] L. Vempati, J. D. Cressler, J. A. Babcock, R. C. Jaeger, D. L. Harame, “Low-frequency noise in UHV/CVD epitaxial Si and SiGe bipolar transistor,” IEEE J. Solid-State Circuit, vol. 31, no. 10, pp. 1458-1467, Oct. 1996.
[52] B. V. Haaren, M. Regis, O. Llopis, L. Escotte, A. Gruhle, C. Mahner, R. Plana, J. Graffeuil, “Low-frequency noise properties of SiGe HBT’s and application to ultra-low phase-noise oscillators,” IEEE Trans. on Microwave Theory Tech., vol. 46, no. 5, pp. 647-652, May 1998.
[53] D. Harame, D. C. Ahlgren, D. D. Coolbaugh, J. S. Dunn, G. G. Freeman, J. D. Gillis, R. A. Groves, G. N. Hendersen, R. A. Johnson, A. J. Joseph, S. Subbanna, A. M. Victor, K. M. Watson, C. S. Webster, P. J. Zampardi, “Current status and future trends of SiGe BiCMOS Technology,” IEEE Trans. on Electron Devices, vol. 48, no. 11, pp. 2575-2594, Nov. 2001.
[54] J. S. Rieh, B. Jagannathan, H. Chen, K. Schonenberg, D. Angell, A. Chinthakindi, J. Florkey, F. Golan, D. Greenberg, S. J. Jeng, M. Khater, F. Pagette, C. Schnabel, P. Smith, A. Stricker, K. Vaed, R. Volant, D. Ahlgren, G. Freeman, K. Stein, and S. Subbanna, “SiGe HBT’s with cut-off frequency of 350 GHz,” in IEDM 2002 Tech. Dig., pp. 771-774, 2002.
[55] B. Jagannathan, M. Khater, F. Pagette, J. S. S. Rieh, D. Angell, H. Chen, J. Florkey, F. Golan, D. R. Greenberg, R. Groves, S. J. Jeng, J. Hohnson, E. Mengistu, K. T. Schonenberg, C. M. Schnabel, P. Smith, A. Stricker, D. Ahlgren, G. Freeman, K. Stein, and S. Subbanna, “Self aligned SiGe NPN transistors with 285 GHz fmax and 207 GHz fT in a manufacturable technology,” IEEE Electron Device Lett., vol. 23, no. 2, pp. 258-260, Feb. 2002.
[56] X. Wang, D. Wang, C. Masse, and P. Bacon, “Low phase noise SiGe voltage-controlled oscillators for wireless applications,” J. Microwave, vol. 45, no. 2, pp. 84-99, Feb. 2002.
[57] S. P. O. Bruce, L. K. J. Vandamme, and A. Rydberg, “Measurement of Low-Frequency Base and Collector Current Noise and Coherence in SiGe Heterojunction Bipolar Transistors Using Transimpedance amplifiers,” IEEE Trans. on Electron Devices, vol. 46, no. 5, pp. 993-1000, May 1999.
[58] J. Tang, G. Niu, A. J. Joseph, and D. L. Harame, “Impact of Collector-Base Junction Traps and High Injection Barrier Effect on 1/f Noise,” in Proc. IEEE Bipolar/BiCMOS Circuits and Tech. Meeting 2003, pp. 175-178, 2003.
[59] T. G. M. Kleinoenning, “Low- Frequency Noise in Modern Bipolar Transistors: Impact of Intrinsic Transistor and Parasitic Series Resistances,” IEEE Trans. on Electron Devices, vol. 41, no. 11, pp. 1981-1991, Nov. 1994.
[60] G. S. Kousik, C. M. V. Vliet, G. Bosman, P. H. Handel, “Quantum 1/f noise associated with ionized impurity scattering and electron-phonon scattering in condensed matter,” Adv. Phys., vol. 34, no. 6, pp. 663-702, Jun 1986.
[61] D. L. Harame, D. C. Ahlgren, D. D. Coolbaugh, J. S. Dunn, G. Freeman, J. D. Gillis, R. A. Groves, F. N. Hendersen, R. A. Johnson, A. J. Joseph, S. Subbanna, A. M. Victor, K. M.Watson, C. S.Webster, and P. J. Zampardi, “Current status and future trends of SiGe BiCMOS technology,” IEEE Trans. on Electron Devices, vol. 48, pp. 2575-2594, Nov. 2001.
[62] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966.
[63] L. K. J. Vandamme, and G. Trefan, “Review of low-frequency noise in bipolar transistors over the last decade,” in Proc. IEEE Bipolar/BiCMOS Circuits and Technol. Meeting 2001, pp. 68-73, 2001.
[64] W. Liu, Handbook of III-V Heterojunction Bipolar Transistors, New York: J. Wiley & Sons, pp. 986-987, 1998.
[65] J. Tang, G. Niu, A. J. Joseph, and D. L. Harame, “Impact of collector-base junction traps on low-frequency noise in high breakdown voltage SiGe HBTs,” IEEE Trans. on Electron Devices, vol. 51, no. 9, pp. 1475-1482, Sept. 2004.
[66] H. Fukui, “The noise performance of microwave transistors,” IEEE Trans. on Electron Devices, vol. 13, pp. 329-341, Mar. 1966.