| 研究生: |
江英澤 Ying-Tse Chiang |
|---|---|
| 論文名稱: |
非球面閃耀式微光柵設計與光罩製作 Design of Micro-Aspheric Blazed Grating Design and their Gray-level Mask Fabrication |
| 指導教授: |
葉則亮
Tse-Liang Yeh 陳顯禎 Shean-Jen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 光柵 、高密度分波多工 、閃耀式光柵 、非球面 、雷射書寫 、灰階光罩 、像差 |
| 外文關鍵詞: | LDW, aspheric, blazed grating, DWDM, grsting, gray-level mask, aberration |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非球面閃耀式微光柵 (micro-aspheric blazed grating)的結構主要結合閃耀式光柵高階繞射之高效率分光能力與非球面鏡近似無像差之聚焦功能。論文中首先推導出此光學元件之繞射分光與多項式非球面鏡聚焦公式,進而分析討論入射狹縫(entrance slit)、光柵繞射及曲面像差等三個主要影響光學繞射分光系統之解析力(resolving power),研究發現在適當大小入射狹縫與高階繞射閃耀式光柵下,利用多項式非球面聚焦鏡,即使於紅外光區域內,仍可獲得超高解析度之分光能力。此光柵除了設計於經線(meridional)之多項式非球面聚焦功能外,尚包含緯線聚焦(sagittal focus)能力,具有超高分波多解多工器(demultiplexer)功能,將有機會成為高密度分波多工(dense wave- length division multiplexing,DWDM)光纖通訊系統中之重要光學元件。另外非球面閃耀式微光柵可藉由高精度之灰階光罩(gray level mask)來轉印製成,因此本論文針對自製之可調變雷射書寫系統(laser direct writer,LDW)於灰階光罩製作上精度的提昇加以分析改進。
A novel micro-aspheric blazed grating integrated with high-efficiency and high-resolution dispersion capability of blazed grating and nearly no aberration limit of aspheric focusing has been proposed. In this thesis, the blazed grating equation and the aspheric polynomial formula of this optical diffractive element are derived, and then the resolution mainly caused by the size of entrance slit, the capability of grating dispersion, surface aberration are discussed. With a suitable size of the entrance slit and a higher diffraction order blazed function, this diffractive element based on a fourth-order-polynomial surface can achieve an ultrahigh resolving power even in the entire infrared region. The optical element provides both meridional aspheric focusing and sagittal focusing for abnormal incident polychromatic light beam. The novel grating has been designed as an optical demultiplexer for use in dense wavelength division multiplexing (DWDM) optical communication. The micro-aspheric blazed grating template can be made of a gray level mask by using a high-precision laser direct writer (LDW) with light intensity modulation of 1% precision. Therefore, the performance of a home-made LDW that is already to fabricate optical masks for simple diffractive elements is needed to be improved.
[1] 鄧禮東, ”密集波分複用濾波技術及國內外發展趨勢,” 光學工程, 79, 63-72, 2002.
[2] Y. Fujii and J. Minowa, “Optical demultiplexer using a silicon concave diffraction grating,” Applied Optics, 22, 974-978, 1983.
[3] A. Stavdas, J. E. Midwinter, P. Bayvel, and C. Todd, “Design of a holographic concave grating used as a multiplexer/demultiplexer in dense wavelength-routed optical networks with subnanometer channel spacing,” Journal of Modern Optics, 45, 1863-1874, 1995.
[4] Z. J. Sun, K. A. McGreer, and J. N. Broughton, “Demultiplexer with 120 channels and 0.29 nm. channel spacing,” IEEE Photonics Technology Letters, 10, 90-92, 1998.
[5] H. Noda, T. Namioka, and M. Seya, “Design of holographic concave gratings for Seya–Namioka monochromators,” Journal of the Optical Society of America A, 64, 1043-1048, 1974.
[6] J. N. McMullin, R. G. DeCorby, and C. J. Haugen, “Theory and simulation of a concave diffraction grating demultiplexer for coarse WDM systems,” Journal of Lightwave Technology, 20, 758-765, 2002.
[7] E. Gini, W. Hunziker, and H. Melchior, “Polarization independent InP WDM multiplexer/demultiplexer module,” Journal of Lightwave Technology, 16, 625-630, 1998.
[8] J.-J. He, B. Lamontagne, A. Del?e, L. Erickson, M.Davies, and E.S. Koteles, “Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP,” Journal of Lightwave Technology, 16, 631-638, 1998.
[9] X. Chen, J.N. McMullin, C.J. Haugen, and R.G. DeCorby,” Planar concave grating demultiplexer for coarse WDM based on confocal ellipses,” Optics Communications, 237, 71-77, 2004.
[10] M. A. Cowen, M. Owen, I. H. White, and R. V. Penty, “Polymeric wavelength division multiplexer,” Electronics Letters, 35, 1464-1465, 1999.
[11] Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE Journal of Selected Topics in Quantum Electronics, 8, 1090-1101, 2002.
[12] B. Humphreys, and E. Koteles,” Fabrication challenges for enabling metropolitan WDM network technologies,” Compound Semiconductor, 1, 87, 2001.
[13] S. Singh, “Diffraction gratings: aberrations and applications”, Optics and Laser Technology, 31, 195-218, 1999.
[14] T. Onaka, T. Miyata, H. Kataza, and Y. Okamoto, “Design for an aberration-corrected concave grating for a mid-infrared long-slit spectrometer,” Applied Optics, 39, 1474-1479, 2000.
[15] S. Engman and P. Lindblom, “Blaze characteristics of echelle gratings,” Applied Optics, 21, 4356-4362, 1982.
[16] E. Popov, B. Bozkov, M. Sabeva, and D. Maystre, “Blazed holographic grating efficiency-numerical comparison with different profiles,” Optics Communications, 117, 413-416, 1995.
[17] 曲昌盛, ”灰階光罩微影技術製作繞射光學元件”, 光訊, 80, 23-27, 1999.
[18] E.-B. Kely, ”Continuous profile writing by electron and optical lithography,” Microelectronic Engineering, 34, 261-298, 1997.
[19] W. D?schner, M. Larsson, and S. H. Lee, ”Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemically assisted ion-beam-etching step,” Applied Optics, 34, 2534-2539, 1995.
[20] M. R. Wang and H. Su, “Laser direct-write grey-level mask and one-step etching for diffractive microlens fabrication,” Applied Optics, 37, 7568-7576, 1998.
[21] W. D?schner, P. Long, R. Stein, C. Wu, and S.-H. Lee, “Cost-effective mass fabrication of multilevel diffractive optical elements by use of a single optical exposure with a grey-scale mask on high-energy beam-sensitive glass,” Applied Optics, 36, 4675-4680, 1997.
[22] V. Korolkov, A. Malyshev, A. Poleshchuk, V. Cherkashin, H. J. Tiziani, C. Prub, T. Schoder, J. Westhauser, and C. Wu, “Fabrication of grey-scale masks and diffractive optical elements with LDW-glass,” Proceedings of SPIE, 4440, 73-84, 2001.
[23] V. Korolkov, R. Shimansky, A. Poleshchuk, V. Cherkashin, A. Kharissov, and D. Denk, ”Requirements and approaches to adapting laser writers for fabrication of grey-scale masks,” Proceedings of SPIE, 4440, 256-267, 2001.
[24] W. B. Peatman, Gratings, Mirrors, and Slits, Netherlands: Gordon and Breach Science Publishers, 1997.
[25] M. R. Howells, “Plane grating monochromators for synchrotron radiation,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 177, 127-139, 1980.
[26] M. C. Hutley, Diffraction gratings, National Physical Laboratory, 1982.
[27] T. J. Suleski and D. C. O''Shea, ” Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers,” Applied Optics, 34, 7507-7517, 1995.
[28] G. J. Swanson, ‘‘Binary optics technology: the theory anddesign of multilevel diffractive optical elements,’’ MIT Lincoln Laboratory Report, 854, 1989.
[29] 杜茂楓, 光強調變雷射書寫機之研製, 中央大學機械所碩士論文, 民國91年.
[30] 張子斌, 雷射直寫灰階光罩之製作, 中央大學光電所碩士論文, 民國91年.