跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖家承
Chia-Cheng Liao
論文名稱: 伺服主機負荷分析以改善網路品質量測方法之研究
The study of server loading analysis for network quality improvement
指導教授: 陳彥文
Yen-Wen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系在職專班
Executive Master of Communication Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 67
中文關鍵詞: 軟體定義網路共識分析負載平衡
外文關鍵詞: Software-Defined Network, Consensus, Load Balancing
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在目前網路的環境中,不論是一般上網(Internet)、多媒體服務(Media)、企業內部網路 (Corporate)...等等,皆會透過設立許多可提供服務內容的存取伺服器來達到地域性的備援與 負載平衡(Load Balancing),但礙於各伺服器的負載狀況是彼此獨立的,當端對端品質產生異 常時,傳統網路架構無法容易的在當下判斷是否為服務內容提供者的伺服器異常,又或是在 傳輸電路路徑當中有壅塞等之類的事件發生,導致問題排除的時間不容易掌控。
    對於如何有效解決既有網路中的品質判斷問題,軟體定義網路(SDN, Software Defined Network)的可程式化管理方式可以解決此類問題。有別於傳統網路的分散架構,SDN 將網路 劃分成控制層(Control Plane)與資料層(Data Plane),透過程式化的方式對控制器(Controller)進 行控制層的運作,將各個獨立的網路設備,集中管理設備的路由規則表(Rule tables),而交換 器(Switch)僅需負責資料層的封包傳輸。
    本研究將使用 SDN 可程式化作為實驗的方向,透過控制器監控著端對端的封包回應狀況, 統一回傳給資料蒐集中心(Collector)進行所有控制器之間的數據共識決策與判斷,將達成共識 的高負載,透過控制器修改 Open vSwitch 的路由表,把流量轉移至負載較輕的路徑,並經由 實驗三個測試環境,分別為傳統方式(Traditional Base)、最長延遲路由調整(Longest Delay Reroute)以及本研究提出的共識決策(Consensus Base),搭配 KVM 模擬器進行以上三種環境進 行效能分析。而經由實驗結果顯示,本研究提出的共識決策能夠合理的判斷端對端的負載狀 況,將高負載的路徑從 Open vSwitch 中修改成低負載的路徑,使整體端對端的平均回應時間 (Avg Time)有效降低,讓低負載的伺服器之資源有效地利用。


    In the current Internet environment, all the geographic redundancy and load balancing, including Internet, media, corporate...etc, can be achieved by establishing servers that are able to provide service content. However, in view of the independence of server loading status, it is difficult to instantly determine whether it is a server malfunction from the content provider, or it is a circuit congestion occurs in the transmitting route, which result in the time uncertainty of trouble shooting under the traditional Internet structure.
    To efficiently address the problems that happen when determining the quality of existing network, the programmable management of SDN(Software Defined Network) is the solution. Different from the traditional decentralized network, the network of SDN consist of Control Plane and Data Plane, operating the Controller in the Control Plane by programming it. SDN also centralizes the management of all rule tables from each independent network devices — Switch, which is only responsible for the package transmission.
    The study takes the programmable SDN as the direction of the experiment. It monitors the end- to-end packet response status through the Controller, and send the data back to the central data collector to process the consensus decision-making within all controllers. Then, the result of the process will be sent to the controllers, further allowing them to modify the routing table of Open vSwitch and to transfer the flow from the determined heavy loading route to the one with lower loading. The performance analysis is conducted with using KVM simulator under three different testing environments, including Traditional Base, Longest Delay Reroute, and Consensus Base suggested from the study.
    The result of the experiment shows that the Consensus base suggested by the study can correctly determine the loading status, modifying the route in Open vSwitch from heavy loading path to lowest loading path. It significantly reduced the overall responding time of the packet, and further utilized the resources from the low loading servers efficiently.

    摘要 I ABSTRACT II 目錄 IV 圖目錄 VI 表目錄 VIII 1. 第一章 緒論 1 1.1. 研究動機與目的 1 1.2. 章節概要 2 2. 第二章 相關研究與文獻 3 2.1. SDN基本介紹 5 2.2. SDN控制器 6 2.3. Open Flow通訊協定 8 2.4. 相關文獻 10 3. 第三章 實驗方法 15 3.1. 負載偵測 16 3.2. 共識分析 19 3.3. 負載分析 23 3.4. 負載調整 25 4. 第四章 實驗與結果討論 31 4.1. 實驗環境 31 4.2. 實驗結果分析 34 4.2.1. 無背景流量 35 4.2.2. 兩部Server網路頻寬滿載 39 4.2.3. 單一Server發生高延遲 43 4.2.4. 兩部Server發生高延遲 47 5. 第五章 結論 51 參考文獻 53

    [1] Maya Tabuchi, Yoshihiro Ito and Takehiro Fujita, "Study of the Effect of the Mean and Standard Deviation of Response Time on QoE in Web Services", 2016 International Conference on Information and Communication Technology Convergence (ICTC), pp. 162- 164, Oct. 2016.
    [2] [Online].Available: https://www.speedtest.net/insights/blog/speed-rating-nps-taiwan-mobile- q2-2020/#chinese [Accessed Sep. 05, 2020.]
    [3] [Online].Available: https://www.speedtest.net/ [Accessed Sep. 05, 2020.]
    [4] S. Wilson Prakash, P. Deepalakshmi, "Server-based Dynamic Load Balancing", 2017
    International Conference on Networks & Advances in Computational Technologies (NetACT),
    pp. 25-28, July. 2017.
    [5] V Nithin ; A. Rathod ; V. Badarla ; T. Humernbrum ; S. Gorlatch, "Efficient load balancing for
    multicast traffic in data center networks using SDN", 2018 10th International Conference on
    Communication Systems & Networks (COMSNETS), pp. 113-120, Jan. 2018.
    [6] [Online].Available: https://sdn.systemsapproach.org/intro.html [Accessed Sep. 07, 2020.]
    [7] [Online].Available: https://www.sdxcentral.com/networking/sdn/definitions/what-is-sdn-
    controller/ [Accessed Sep. 06, 2020.]
    [8] [Online].Available: https://www.opennetworking.org/sdn-definition/ [Accessed Sep. 07, 2020.]
    [9] [Online].Available: https://www.sdxcentral.com/networking/sdn/definitions/what-is-ryu-
    controller/ [Accessed Sep. 07, 2020.]
    [10] [Online].Available: https://thenewstack.io/sdn-series-part-iv-ryu-a-rich-featured-open-source-
    sdn-controller-supported-by-ntt-labs/ [Accessed Sep. 07, 2020.]
    [11] [Online].Available: https://www.opennetworking.org/wp-
    content/uploads/2014/10/TR_Multiple_Flow_Tables_and_TTPs.pdf [Accessed Sep. 07, 2020.]
    [12] [Online].Available: https://www.opennetworking.org/wp-content/uploads/2013/04/openflow- spec-v1.3.1.pdf [Accessed Sep. 07, 2020.]
    [13] [Online].Available: https://en.wikipedia.org/wiki/OpenFlow [Accessed Sep. 07, 2020.]
    [14] [Online].Available: https://www.netronome.com/blog/ovs-offload-models-used-nics-and-
    smartnics-pros-and-cons/ [Accessed Sep. 07, 2020.]
    [15] [Online].Available: http://www.openvswitch.org//support/dist-docs/ovs-fields.7.txt
    [Accessed Sep. 08, 2020.]
    [16] [Online].Available: https://link.springer.com/article/10.1007/s10922-020-09550-z
    [Accessed Sep. 08, 2020.]
    [17] Dong-Yan Zhang, Ming-Zeng Hu, Hong-Li Zhang Ting-Biao Kang "THE RESEARCH ON
    METRICS FOR NETWORK PERFORMANCE EVALUATION", 2005 International
    Conference on Machine Learning and Cybernetics, pp. 1127-131 Vol. 2, Aug. 2005.
    [18] Umme Zakia, Hanene Ben Yedder, "Dynamic Load Balancing in SDN-Based Data Center
    Networks", 2017 8th IEEE Annual Information Technology, Electronics and Mobile
    Communication Conference (IEMCON), pp. 242-247, Oct. 2017.
    [19] Hatim Gasmelseed Ahmed, R.Ramalakshmi, "Performance Analysis of Centralized and
    Distributed SDN Controllers for Load Balancing Application", 2018 2nd International
    Conference on Trends in Electronics and Informatics (ICOEI), pp. 758-764, May. 2018.
    [20] Soheil Hassas Yeganeh, Yashar Ganjali, "Kandoo: A Framework for Efficient and Scalable
    Offloading of Control Applications", HotSDN '12: Proceedings of the first workshop on Hot
    topics in software defined networks, pp. 19-24, Aug. 2012.
    [21] Nataša Maksi, "Two-Phase Load Balancing for Data Center Networks using OpenFlow", 2017
    25th Telecommunication Forum (TELFOR), pp. 1-4, Nov. 2017.
    [22] Jingmei Li, Linfeng Yang *, Jiaxiang Wang, Shuang Yang, "Research on SDN Load Balancing based on Ant Colony Optimization Algorithm", 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), pp. 979-982, Dec. 2018.
    [23] Vidya S.Handur, Prakash R.Marakumbi, "Response time analysis of dynamic load balancing algorithms in Cloud Computing", 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), pp. 371-375, July. 2020.
    [24] Geon-Hwan Kim, You-Ze Cho, "Delay-Aware BBR Congestion Control Algorithm for RTT Fairness Improvement", IEEE Access, pp. 4099-4109 Vol. 8, Dec. 2019.
    [25] [Online].Available: https://en.wikipedia.org/wiki/Consensus_algorithm [Accessed Sep. 08, 2020.]
    [26] [Online].Available: https://blockgeeks.com/guides/blockchain-consensus/ [Accessed Sep. 08, 2020.]
    [27] [Online].Available: https://en.wikipedia.org/wiki/Standard_deviation [Accessed Sep. 08, 2020.]
    [28] Sander Greenland, Stephen J. Senn, Kenneth J. Rothman, John B. Carlin, Charles Poole, Steven N. Goodman & Douglas G. Altman, "Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations", European Journal of Epidemiology, pp. 337-350 Vol. 31, July. 2016
    [29] [Online].Available: https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine [Accessed Oct. 10, 2020.]

    QR CODE
    :::