跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江昆嶸
Kun-Jung Chiang
論文名稱: XY strip探測器在質子治療之應用
Application of XY strip detector in proton therapy
指導教授: 陳鎰鋒
Augustine E. Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 73
中文關鍵詞: 質子治療平行板游離腔質子射束每日品保質子治療病患劑量品保
外文關鍵詞: Proton therapy, Parallel-Plate Ionization Chamber, Proton beam Daily Quality Assurance, Patient-specific quality assurance
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自1982年起,癌症即高居國人十大死因之首。如今,放射線治療被認為是一種可行的非侵入性癌症治療方法,因此約有50%的癌症患者在治療期間接受放射治療,放射線治療則包含有光子治療與質子治療。質子治療的最新進展為治療腫瘤提供了高度均勻性和高劑量率的精準治療方式,要達到這樣的目的需要更好的品保程序來確保治療品質。因此本論文中討論之探測器設計出發點為質子治療之應用。
    於本論文內研究之XY strip探測器特點在於擁有大面積的感應接受面(345.44×345.44 〖mm〗^2),高空間解析度( < 60μm),高動態反應區間(20 bits, ADC可達1,048,576)與高靈敏度(0.1 pC),並具有彈性操作選擇如積分時間與電荷累積範圍等項設定。再加上利用LabVIEW程式之人機互動介面收集實驗數據並即時監控射束變化,所以XY strip探測器現有之硬體結構、電子元件與操作介面皆可符合現行醫院質子射束相關之品保作業。
    應用本探測器於醫院每日品保之筆尖式掃描射束參數時,可藉此了解本探測器之性能,其整體解析度均優於現行醫院使用之探測器。於質子射束病患劑量品保測試時,藉由本探測器之高訊號動態範圍與訊號變化率,可清楚區分射束入射不同能量時的吸收劑量分布,如能輔以適當之阻擋本領與模擬程式,以重建病患體內不同深度與不同位置之三維劑量分佈,若依此實行病患劑量品保,可望縮短測試時間至5分鐘以內,這將為病患劑量品保帶來顯著的效率及品質提升。以此結果顯示,本探測器適用於醫院每日質子射束品保及病患劑量品保之用。
    林口長庚醫院新型質子治療以筆尖式射束掃瞄時,射束在橫向空間變化很大,本探測器可分辨出質子射束入射不同位置時射束形狀之些微差異,未來探測器如能經過更精確之校準或是提高射束劑量率時,探測器可偵測之變化率預期可以達到一萬倍,屆時射束位置與形狀的變化皆可清楚記錄,依此特點未來可朝質子治療儀品保方向發展。


    Since 1982, cancer has been the top ten cause of death among Chinese people. Today, radiation therapy is considered a viable non-invasive cancer treatment, so about 50% of cancer patients receive radiation therapy during treatment, and radiation therapy includes photon therapy and proton therapy. Recent advances in proton therapy have provided a highly uniform and high-dose-rate of precise treatment for the treatment of tumors. To achieve this goal, a better quality assurance program is needed to ensure treatment quality. Therefore, the starting point of the detector design discussed in this paper is the application of proton therapy.
    The XY strip detector studied in this paper is characterized by a large area of induction receiving surface (345.44 × 345.44 mm2), high spatial resolution ( < 60μm), high dynamic response range (20 bits, ADC reachable 1,048,576) with high sensitivity (50 fC), and has flexible operation options such as integration time and charge accumulation range. In addition, the LabVIEW program's human-machine interface is used to collect experimental data and monitor beam changes in real time. Therefore, the existing hardware structure, electronic components, and operation interface of the XY strip detector can meet the current hospital proton beam-related quality assurance operations.
    The detector can be used to understand the performance of the detector when it is used in the daily inspection of the pen tip scanning beam parameters of the hospital. The overall resolution is better than that of the current hospital. In the proton beam patient dose test, the high signal dynamic range and signal change rate of the detector can clearly distinguish the absorbed dose distribution when the beam is incident with different energies if it can be supplemented with appropriate blocking power and simulation. Program to reconstruct the three-dimensional dose distribution at different depths and locations in patients. If patient dose protection is implemented, it is expected to shorten the test time to less than 5 minutes, which will bring significant efficiency to patient dose assurance. And quality improvement. This result shows that the detector is suitable for hospital daily proton beam warranty and patient dose warranty.
    When the new proton therapy in Linkou Chang Gung Hospital uses a pen tip beam scan, the beam varies greatly in the lateral space. The detector can distinguish the slight difference in beam shape when the proton beam is incident at different positions. For more accurate calibration or to increase the beam dose rate, the detector can detect a rate of change of up to 10,000 times. At that time, the position and shape of the beam can be clearly recorded. According to this feature, the proton therapy device can be used in the future. The direction of quality assurance.

    摘要 i Abstract ii 誌謝 iV 目錄 v 圖目錄 vii 表目錄 ix 一、簡介 1 二、 XY strip探測器 4 2.1 XY strip探測器簡介 4 2.2 XY strip探測器訊號讀出電路 6 2.3 NI LabVIEW控制程式 7 2.4屏蔽工作 9 2.5 XY strip探測器操作條件設定 10 2.5.1電荷累積範圍設定 10 2.5.2積分時間設定 12 2.5.3探測器操作電壓 14 2.6預估質子射束訊號 15 三、XY strip探測器在質子治療之應用 17 3.1 每日品保之筆尖式射束參數測試 17 3.1.1 質子射束位置與寬度 22 3.1.2 質子射束掃瞄速度 24 3.2 病患劑量品保 27 3.3 質子射束橫向輪廓研究 31 四、結果與討論 40 4.1 結論 40 4.2 未來展望 41 附錄A、再結合效應 42 附錄B、多重散射模擬 49 附錄C、遠端連線設定 57 參考文獻 58

    [1] Baskar, R., et al. "Cancer and radiation therapy: current advances and future directions." International journal of medical sciences 9.3 (2012): 193.
    [2] Levin, W. P., et al. "Proton beam therapy." British journal of Cancer 93.8 (2005): 849.
    [3] J.W. Boag, Ionization chambers, in: F.H. Attix, W.C. Roesch, E. Tochilin (Eds.) Radiation Dosimetry Vol. 2, Chap. 9, New York: Academic; 1966,1–72
    [4] J.R. Greening Saturation characteristics of parallel-plate ionization chambers, Physics in Medicine & Biology, 9 (1964) 143 – 155.
    [5] Lorentini, S., and M. Schwarz. "61. Dose-area-product determination with large planes-parallel ionization chambers: New approach to reference dosimetry in active scanning protontherapy." Physica Medica 56 (2018): 101.
    [6] MarkFilipak, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=27983203
    [7] Kohno, R., et al. "Development of continuous line scanning system prototype for proton beam therapy." International Journal of Particle Therapy 3.4 (2017): 429-438.
    [8] ionization chamber. (n.d.) The Columbia Electronic Encyclopedia®. (2013). Retrieved March 17 2019 from https://encyclopedia2.thefreedictionary.com/ionization+chamber
    [9] FlashForward Consortium , Varian Medical Systems, https://www.varian.com/oncology/solutions/proton-therapy/flashforward-consortium
    [10] Flash Irradiation Delivered in a Clinical Treatment Room, IBA, https://iba-worldwide.com/content/pt/proton-flash-irradiation-delivered-clinical-treatment-room
    [11] Lin, Y.C., et al. "Monte Carlo simulations for angular and spatial distributions in therapeutic-energy proton beams." Radiation Physics and Chemistry 140 (2017): 217-224.
    [12] Hartmann, Bernadette, et al. "Investigations of a flat-panel detector for quality assurance measurements in ion beam therapy." Physics in Medicine & Biology 57.1 (2011): 51.
    [13] Arjomandy, Bijan, et al. "Use of a two‐dimensional ionization chamber array for proton therapy beam quality assurance." Medical physics 35.9 (2008): 3889-3894.
    [14] ICRU78, PRESCRIBING, RECORDING, AND REPORTING Proton Therapy, 2007.
    [15] Hara, Yousuke, et al. "A Patient-Specific QA Procedure for Moving Target Irradiation in Scanned Ion Therapy." (2016): MOPB015.
    [16] Zhu, X., et al. "Towards effective and efficient patient-specific quality assurance for spot scanning proton therapy." Cancers 7.2 (2015): 631-647.
    [17] Schwaab, J., et al. "Experimental characterization of lateral profiles of scanned proton and carbon ion pencil beams for improved beam models in ion therapy treatment planning." Physics in Medicine & Biology 56.24 (2011): 7813.
    [18] Actis, O., et al. "A comprehensive and efficient daily quality assurance for PBS proton therapy." Physics in Medicine & Biology 62.5 (2017): 1661.
    [19] ICRU 50, PRESCRIBING, RECORDING, AND REPORTING Proton Therapy, 1993.
    [20] ICRU 62, PRESCRIBING, RECORDING, AND REPORTING Proton Therapy, 1999.
    [21] Vatnitskiy, S., P. Andreo, and D. T. L. Jones. "Recent advances in dosimetry in reference conditions for proton and light-ion beams." Proc. Int. Symp. on Standards, Applications and Quality Assurance in Medical Radiation Dosimetry (Vienna, 9–12 Nov. 2010). 2011.
    [22] Low, Daniel A., and James F. Dempsey. "Evaluation of the gamma dose distribution comparison method." Medical physics 30.9 (2003): 2455-2464.
    [23] Andreo, Pedro, et al. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. Vol. 398. IAEA technical report series, 2000.
    [24] S.C. Lillicrap, et al. Code of practice for high-energy photon therapy dosimetry based on the NPL absorbed dose calibration service, Physics in Medicine & Biology, 35 (1990) 1355 – 1361.
    [25] M. Liszka, et al. Ion recombination and polarity correction factors for a plane–parallel ionization chamber in a proton scanning beam, Medical Physics, 45 (2018) 391 – 401.
    [26] J.B. Christensen, H. Tölli, N. Bassler, A general algorithm for calculation of recombination losses in ionization chambers exposed to ion beams. Medical physics, 43.10 (2016) 5484-5492.
    [27] Lin, Yi-Chun, et al. "Monte Carlo simulations for angular and spatial distributions in therapeutic-energy proton beams." Radiation Physics and Chemistry 140 (2017): 217-224.
    [28] R. Tansho, T. Furukawa, Y. Hara, et al. Experimental verification of gain drop due to general ion recombination for a carbon‐ ion pencil beam Experimental verification of gain drop due to general ion recombination for a carbon‐ion pencil beam, Medical Physics, 43 (2016) 635 – 642.
    [29] Protection, Radiological. "ICRP publication 103." Ann ICRP 37.2.4 (2007): 2
    [30] L. Vazquez-Quino, et al. "Patient specific pre-treatment QA verification using an EPID approach." Technology in cancer research & treatment 13.1 (2014): 1-10.
    [31] 許琬婷,「鼻咽癌多種治療技術之放射治療計畫評量」,中臺科技大學,碩士論文,民國98年。
    [32] 蔡綉吟,「質子束在水中橫向寬度及深度劑量曲線的量測與模擬」,中央大學,碩士論文,民國102年。
    [33] Lovina Wijayanti,「Proton Energy Estimation by Least Square Method」,中央大學,碩士論文,民國106年。
    [34] 彭瀚生,「多重線絲漂移室之初始性能」,中央大學,碩士論文,民國106年。

    QR CODE
    :::