跳到主要內容

簡易檢索 / 詳目顯示

研究生: 范芙蓉
Fu-Jung Fan
論文名稱: 利用表面電漿共振及單分子模型槽探討類澱粉胜肽與不同組成微脂粒交互作用動力學之研究
Kinetics Studies of Interactions between β-amyloid and Various Composition Liposome by Surface Plasmon Resonance and Langmuir-Blodgett Trough
指導教授: 陳文逸
Wen-Yih Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 118
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是探討 Aβ? 與微脂粒之交互作用,以不同培養時間的
    Aβ 與不同組成之微脂粒(使用DPPC、DPPG 及添加神經節苷酯
    (GM1)及膽固醇等)進行討論,以期能說明 Aβ? 與細胞膜之作用行
    為。實驗上主要分為兩部分:第一部份利用單分子模型槽探討 Aβ? 與
    單分子層之間隨時間表面壓的變化;第二部分是利用表面電漿共振儀
    及恆溫滴定微卡計探討 Aβ? 與微脂粒交互作用之動力學及熱力學。
    另,也配合原子力顯微鏡來偵測SPR 實驗後其Aβ 及微脂粒的構型。
    使用Aβ (1-40)溶液與不同組成之單分子層的交互作用,本研究先
    建立不同單分子膜組成之Π-A 圖,且選定初始表面壓為 15mN/m,來
    量測Aβ 分子由溶液擴散至氣/液界面的速率。其速率:帶有負電的脂
    質(DPPG 或GM1)>DPPC+膽固醇>兩性脂質(DPPC),顯示一開
    始吸附於單分子層是靜電作用力為主。而吸附至氣/液界面的 Aβ 分子
    結構的重排與構型轉變行為速率為:同時帶有負電脂質(DPPG)及神
    經節苷酯(GM1)+膽固醇>帶負電脂質>DPPC+膽固醇>DPPC,表
    示同時有負電脂質跟膽固醇存在時,有助於Aβ 於膜上的構型轉變。
    在表面電漿共振儀探討 Aβ (1-40)與微脂粒交互作用之動力學研
    究方面, 單體的 Aβ 與不同組成微脂粒作用其親和力大小為:
    DPPC/GM1/膽固醇(5:3:2)>DPPC/膽固醇(7:3)>DPPC/DPPG/膽固醇(5:2:3)>DPPC/膽固醇(9:1)>DPPC。由親和力強度可判斷單體
    的 Aβ 與不同組成之微脂粒交互作用主要是靠靜電作用力。量測聚集
    體與微脂粒交互作用,發現聚集體的Aβ 其親和力較單體的Aβ 低,表
    示聚集體的Aβ 較不易與微脂粒作用。
    而在單體 Aβ? (1-40)與微脂粒交互作用之熱力學研究方面,利用
    ITC 量測單體Aβ 與DPPC、DPPC+膽固醇及DPPC/DPPG/膽固醇(5:2:3)
    之交互作用時,主要為放熱反應,結果顯示其作用力主要為靜電吸引
    力。若添加膽固醇之微脂粒與Aβ作用,使Aβ 較易形成β 結構及膜與
    Aβ 吸附區域形成之cluster 更易誘發溶液中Aβ 與膜表面的Aβ聚集,
    且因疏水作用力反應漸漸變成吸熱。若同時添加膽固醇與負電脂質之
    微脂粒系統與Aβ作用,其P/L 大於0.0023 時,膜表面的Aβ會慢慢誘
    發溶液中的Aβ 與其聚集而放熱變小,而DPPC 微脂粒系統,其P/L
    需到達0.0045 ,才會開始吸引溶液中的Aβ 與其聚集。表示帶有負電
    脂質與膽固醇同時存在時,有助於膜上的Aβ 誘發溶液中的Aβ 於膜表
    面聚集。


    β-amyloid(Aβ)was believed to cause the prime factor of Alzheimer’s
    disease. However, the mechanism of the cytotoxicity and the disease
    caused by Aβ is still unclear. The objective of this work is to study the
    interactions of various incubation time of Aβ with designed liposomes. The
    objectives were achieved by the following studies : First at all, the
    adsorption kinetics behaviors of Aβ on lipid monolayers were studied by
    NIMA trough. Secondly, surface plasmon resonance (SPR) and isothermal
    titration microcalorimetry (ITC) to measure the kinetics and binding
    enthalpy of the interactions between Aβ and various composition
    liposomes. The morphology of liposome before and after interaction with
    Aβ were monitored by atomic force microscopy (AFM).
    Results from lipid monolayer trough studies showed that the rate of
    Aβ adsorbed onto lipid monolayer is mainly due to the electrostatic effect,
    and the structural rearrangements of the adsorbed Aβ is sensitive to the
    lipid monolayer composition.
    Kinetics of Aβ adsorption onto the liposomes by SPR reveal also that
    the driving force of fresh Aβ interacts with various liposomes is
    electrostatic interactions. Fresh and monomer type of Aβ is shown to have
    higher affinities for GM1 containing liposome than that of aggregated Aβ.
    Addition of cholesterol to the liposome could alter membrane fluidity and
    promote the fresh Aβ in solution to interact with Aβ onto the membrane.
    The binding enthalpies between fresh Aβ and liposomes measured by ITC are exothermic reactions and are contributed to the electrostatic interaction.
    The effects of peptide/lipid molar ratio(P/L) on the binding enthalpy were
    also discuss. In general, the binding enthalpy become less exothermic as
    P/L ratio increase, and the transition happens in lower P/L ratio for charged
    lipid.

    中文摘要 I ABSTRACT III 目錄 VI 圖目錄 X 表目錄 XIV 第一章 前言 1 第二章 文獻整理 4 2.1 表面電漿共振(Surface Plasmon Resonance,SPR) 4 2.1.1 表面電漿共振原理 5 2.1.2 光學激發表面電漿之方式 5 2.1.3 SPR檢測生物反應 9 2.1.4 其他類型之表面電漿共振 11 2.1.5.1 長距離表面電漿共振(long-range surface plasmon resonance,LRSPR) 11 2.1.5.2 耦合電漿波導共振(Coupled plasmon-waveguide resonance,CPWR) 12 2.1.5.3 表面電漿共振螢光光譜儀(Surface Plasmon Resonance Fluorescence Spectroscopy,SPFS) 13 2.1.5.4 金奈米粒子增強表面電漿光譜儀(Gold Nanoparticle-Enhanced SPR) 14 2.2 阿茲海默症與類澱粉胜肽 16 2.2.1 阿茲海默症(Alzheimer’s Disease,AD) 16 2.2.2 類澱粉胜肽(β-amyloid)的結構與其毒性 21 2.2.2.1 不同環境中對類澱粉胜肽(β-amyloid)結構變化的影響 23 2.2.2.2 生物細胞膜的存在與組成對Aβ 結構變化的影響 26 2.3 Aβ與單分子層之交互作用 33 2.4 Aβ與生物細胞膜交互作用之動力學研究 36 2.5 Aβ與生物細胞膜交互作用之熱力學研究 39 2.6 相關文獻整理之總結 41 第三章 實驗藥品與儀器設備 43 3.1 實驗藥品 43 3.2 儀器設備 44 3.2.1 表面電漿共振儀(Surface Plasmon Resonance) 45 3.2.1.1 表面電漿共振儀之光學系統 45 3.3 實驗方法 48 3.3.1 PBS緩衝液的製備 48 3.3.2 微脂粒的製備 48 3.3.3 Aβ溶液的製備 49 3.3.4 金膜表面改質 49 3.3.5 表面電漿共振儀之實驗 51 3.3.6 恆溫滴定微卡計實驗 52 3.3.7 單分子模型槽實驗 53 3.3.8 原子力顯微鏡之影像偵測實驗 54 第四章 結果與討論 55 4.1 單分子模型槽實驗 55 4.1.1 使用不同組成的脂質單分子層於氣/液界面上量測Π-A isotherm 55 4.1.2 Aβ吸附於不同組成的脂質單分子層於氣/液界面上量測表面壓-時間等溫線(Π-t isotherm) 59 4.2 SPR實驗 64 4.2.1 金片表面改質 64 4.2.2 不同狀態Aβ(1-40)與不同微脂粒交互作用之動力學探討 70 4.2.3 Aβ(1-40)與不同微脂粒交互作用之AFM影像偵測 85 4.3 ITC實驗 101 第五章 結論 106 第六章 參考文獻 109

    1. Lackmann, M., Bucci, T., Mann, R. J., Kravets, L. A., Viney, E., Smith, F., Moritz, R. L., Carter, W., Simpson, R. J., and Nicola, N. A., ” Purification of a ligand for the EPH-like receptor HEK using a biosensor-based affinity detection approach.” Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2523-2527
    2. Markgren, P. O., Hamalainen, M., and Danielson, U., ” Screening of compounds interacting with HIV-1 proteinase using optical biosensor technology. ” Analytical Biochemistry, 1999, 265, 340-350
    3. Zeder, L. G., Neurath, A. R., and Van Regenmortel, M. H., ” Kinetics of interaction between 3-hydroxyphthaloyl-beta-lactoglobulin and CD4 molecules.” Biologicals, 1999, 27, 29-34
    4. Morton, T. A., and Myszka, D. G., ”Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors.” Methods Enzymol, 1998, 295, 268-294
    5. Myszka, D. G., Jonsen, M. D., and Graves, B. J., ” Equilibrium analysis of high affinity interactions using BIACORE.” Analytical Biochemistry, 1998, 26, 326-330.
    6. Roos, H., Karlsson, R., Nilshans, H., and Persson, A., ” Thermodynamic analysis of protein interactions with biosensor technology.” Journal of Molecular Recognition: JMR, 1998, 11, 204-210
    7. Rebecca, L. R., and Myszka, D. G., ”Advance in Surface plasmon resonance biosensor analysis.” Current opinion in biotechnology, 2000, 11, 54-61
    8. Ritchie, R. H., ” Plasma losses by fast electrons in thin films.” Physical Review, 1957, 106, 874
    9. Stenberg, E., Persson, B., Roos, H., and Urbaniczky, C., ” Quantitative Determination of Surface Concentration of Protein with Surface Plasmon Resonance Using Radiolabeled Proteins.” Journal of Colloid and Interface Science, 1991, 143, 513-526
    10. Watts, H. J., Yeung, D., and Parkes, H., ” Real-time Detection and Quantification of DNA Hybridization by an Optical Biosensor.” Analytical Chemistry, 1995, 67, 4283-4289
    11. Minunni, M., ” Simultaneous determination of β2-microglobulin and IgE using real-time biospecific interaction analysis (BIA).” Analytical Letters, 1995, 28, 933-944
    12. Mozsolits, H., Aguilar, M. I., ”Surface Plasmon Resonance Spectroscopy: An EmergingTool for the Study of Peptide–Membrane Interactions.” Biopolymers (Peptide Science), 2002, 66, 3-18
    13. Hahnefeld, C., Drewianka, S., and Herberg, F. W., ” Determination of Kinetic Data Using Surface Plasmon Resonance Biosensors.” Molecular Diagnosis of Infectious Diseases, Methods in Molecular Medicine, 94, 299-320
    14. 簡汎清, ”超高解析度表面電漿共振生物感測器之研製.” 碩士論文, 國立中央大學機械工程研究所, 2003
    15. Nenninger, G. G., Homola, J., Yee, S. S., and Tobiska, P., ” Long-range surface plasmons for high resolution surface plasmon resonance sensors.” Sensors and Actuators B, 2001, 74, 145-151
    16. Salamon, Z., Brown, M. F., and Tollin, G., ” Plasmon resonance spectroscopy: probing molecular interactions within membranes.” Trends in Biochemical Sciences, 1999, 24, 214-219
    17. Chien, F. C., and Chen, S. J., ” A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes.” Biosensors and Bioelectronics, 2004, 20, 633-642
    18. Liebermann, T., Knoll, W., Sluka, P., and Herrmann, R., ” Complement Hybridization from Solution to Surface Attached Probe Oligonucleotides Observed by Surface Plasmon Field Enhanced Fluorescence Spectroscopy.” Colloids and Surfaces A : Physicochemical and Engineering Aspects, 2000, 169, 337-350
    19. Hutter, E., and Pileni, M. P., ” Detection of DNA Hybridization by Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy.” The Journal of Physical Chemistry B, 2003, 107, 27, 6497-6499
    20. Lyon, L. A., Musick, M. D., and Natan, M. J., ” Colloidal Au-Enhanced Surface Plasomn Resonance Immunosensing.” Analytical Chemistry, 1998, 70, 5177-5183
    21. Hu, W. P., Chen, S. J., Huang, K. T., Hsu, J. H., Chen, W. Y., Chang, G. L., and Lai, K. A., ”A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film.” Biosensors and Bioelectronics, 2004, 19, 1465-1471
    22. Lambert, M. P., Barlow, A. K., Chromy, B.A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. E., Rozovsky, I., Trommer, B., Viola, K. L., Wals, P., Finch, C. E., Krafft, G. A., and Klein, W. L., ” Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins.” Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6448-6453
    23. Esteban, J. A., ” Living with the enemy : a physiological role for the β-amyloid peptide.” TRENDS in Neurosciences, 2004, 27, 1-3
    24. Wood, W. G., Eckert, G. P., Igbavboa, U., Müller, W. E., ” Amyloid beta-protein interactions with membranes and cholesterol : causes or casualties of Alzheimer’s disease.” Biochimica et Biophysica Acta, 2003, 1610, 281– 290
    25. Hardy, J., and Selkoe, D. J., ” The Amyloid Hypothesis of Alzheimer’s Disease : Progress and Problems on the Road to Therapeutics.” Science, 2002, 297, 353-356
    26. Sultana, R., Perluigi, M., and Butterfield, D. A., ”Redox proteomics identification of oxidatively modified proteins in Alzheimer’s disease brain and in vivo and in vitro models of AD centered around Aβ(1–42).” Journal of Chromatography B, 2006, 833, 3–11
    27. William, L. K., ”Synaptic targeting by Aβ oligomers(ADDLS) as a basis for memory loss in early Alzheimer’s disease.” Alzheimer’s & Dementia 2, 2006, 43-55
    28. Kooresh, S. J., Barriob, J. R., Kepeb, V., Wub, H. M., Smallc, G. W., Phelpsa, M. E., Huanga, S. C., ” Imaging β-amyloid fibrils in Alzheimer’s disease : a critical analysis through simulation of amyloid fibril polymerization.” Nuclear Medicine and Biology, 2005, 32, 337–351
    29. Cappai, R., and White, A. R., ” Molecules in focus Amyloid β.” The International Journal of Biochemistry & Cell Biology, 1999, 31, 885-889
    30. Irie, K., Murakami, K., Masuda, Y., Morimoto, A., Ohigashi, H., Ohashi, R., Takegoshi, K., Nagao, M., Shimizu, T., and Shirasawa, T., ” Structure of β-Amyloid Fibrils and Its Relevance to Their Neurotoxicity : Implications for the Pathogenesis of Alzheimer’s Disease.” Journal of bioscience and bioengineering, 2005, 99, 437–447.
    31. Serpell, L.C.,” Alzheimer''s amyloid fbrils: structure and assembly.” Biochimica et Biophysica Acta, 2000, 1502, 16-30
    32. Terzi, E., Hölzemann, G., and Seelig, J., ” Self-association of β-Amyloid Peptide(1–40) in Solution and Binding to Lipid Membranes.” Journal of Molecular Biology, 1995, 252, 633-642
    33. Matsuzaki, K. and Horikiri, C., ” Interactions of Amyloid β-Peptide (1-40) with Ganglioside-Containing Membranes.” Biochemistry, 1999, 38, 4137-4142
    34. Kakio, A., Yano, Y., Takai, D., Kuroda, Y., Matsumoto, O., Kozutsumi, Y., and Matsuzaki, K., ”Interaction Between Amyloid β-Protein Aggregates and Membranes.” Journal of Peptide Science, 2004, 10, 612-621
    35. Liu, R., Yuan, B., Emadi, S., Zameer, A., Schulz, P., McAllister, C., Lyubchenko, Y., Goud, G., and Sierks, M. R.,”Single Chain Variable Fragments against β-Amyloid (Aβ) Can Inhibit Aβ Aggregation and Prevent Aβ -Induced Neurotoxicity.” Biochemistry, 2004, 43, 6959-6967
    36. Ji, S. R., Wu, Y., and Sui, S. F., ” Cholesterol Is an Important Factor Affecting the Membrane Insertion of β-Amyloid Peptide (Aβ1–40), Which May Potentially Inhibit the Fibril Formation.” The Journal of Biological Chemistry, 2002, 277, 6273–6279
    37. Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D’Ursi, A. M., Temussi, P. A., and Picone, D., ”Solution structure of the Alzheimer amyloid β-peptide (1–42) in an apolar microenvironment Similarity with a virus fusion domain.” European Journal of Biochemistry, 2002, 269, 5642-5648
    38. Kremer, J. J., Pallitto, M. M., Sklansky, D. J., and Murphy, R. M., ” Correlation of β-Amyloid Aggregate Size and Hydrophobicity with Decreased Bilayer Fluidity of Model Membranes. ” Biochemistry, 2000, 39, 10309-10318
    39. Wood, S. J., Maleeff, B., Hart, T., and Wetzel, R., ” Physical, Morphological and Functional Differences between pH 5.8 and 7.4 Aggregates of the Alzheimer’s Amyloid Peptide Aβ.” Journal of Molecular Biology, 1996, 256, 870–877
    40. Goldsbury, C. S., Wirtz, S., Müller, S. A., Sunderji, S., Wicki, P., Aebi, U., and Frey, P., ” Studies on the in Vitro Assembly of Aβ1-40: Implications for the Search for Aβ Fibril Formation Inhibitors.” Journal of Structure Biology, 2000, 130, 217-231
    41. Kakio, A., Nishimoto, S.I., Yanagisawa, K., Kozutsumii, Y., Matsuzaki, K., ” Cholesterol-dependent Formation of GM1 Ganglioside-bound Amyloid β-Protein, an Endogenous Seed for Alzheimer Amyloid.” The Journal of Biological Chemistry, 2001, 276, 27, 24985-24990
    42. Schladitz C, E. P. Vieira, H. Hermel, and H. Mohwald,” Amyloid-β-Sheet Formation at the Air-Water Interface.” Biophysical Journal , 1999, 77, 3305-3310
    43. Gursky, O., and Aleshkov, S., ” Temperature-dependent β-sheet formation in β-amyloid Aβ1-40 peptide in water : uncoupling β-structure folding from aggregation.” Biochimica et Biophysica Acta, 2000, 1476, 93-102
    44. Terzi, E., Holzemann, G., and Seelig, J., ” Interaction of Alzheimer β-Amyloid Peptide(1-40) with Lipid Membranes.” Biochemistry, 1997, 36, 14845-14852
    45. Ariga, T., Kobayashi, K., Hasegawa, A., Kiso, M., Ishida, H., and Miyatake, T., ”Characterization of high-affinity binding between ganglioside and amyloid β-protein.” Archives of Biochemistry and Biophysics, 2001, 388, 225-230
    46. Kakio, A., Nishimoto, S. I., Yanagisawa, K., Kozutsumi, Y., and Matsuzaki, K., ” Interactions of Amyloid β-Protein with Various Gangliosides in Raft-Like Membranes: Importance of GM1 Ganglioside-Bound Form as an Endogenous Seed for Alzheimer Amyloid.” Biochemistry, 2002, 41, 7385-7390
    47. McLaurin, J., and Chakrabartty, A., ” Membrane Disruption by Alzheimer β-Amyloid Peptides Mediated through Specific Binding to Either Phospholipids or Gangliosides.” The Journal of Biological Chemistry, 1996, 271, 43, 26482-26489
    48. Terzi, E., Holzemann, G., and J. Seelig, ”Alzheimer β-Amyloid Peptide 25-35: Electrostatic Interactions with Phospholipid Membranes.” Biochemistry, 1994, 33, 7434–7441
    49. Matsuzaki, K., and Horikiri, C., ” Interactions of Amyloid β-Peptide (1-40) with Ganglioside-Containing Membranes.” Biochemistry, 1999, 38, 4137-4142
    50. Wang, S. S., Chen, Y. T., Chen, P. H., Liu, K. N., ”A kinetic study on the aggregation behavior of β-amyloid peptides in different initial solvent environments.” Biochemical Engineering Journal, 2006, 29, 129-138
    51. 左明雪, 2003,”細胞和分子神經生物學 ” 1st ed. pp40-42, 藝軒圖書出版社,Taiwan
    52. McLaurin, J., Franklin, T., Fraser, P. E., and Chakrabartty, A., ”Structural Transitions Associated with the Interaction of Alzheimer β-Amyloid Peptides with Gangliosides.” The Journal of Biological Chemistry, 1998, 273, 8, 4506-4515
    53. Choo-Smith L. P., W. K. Surewicz,”The interaction between Alzheimer amyloid β(1-40) peptide and ganglioside GM1-containing membranes.” FEBS Letters, 1997, 402, 95-98
    54. Yip C. M., E. A. Elton, A. A. Darabie , M. R. Morrison and J. McLaurin,” Cholesterol, a Modulator of Membrane-associated Aβ-Fibrillogenesis and Neurotoxicity.” Journal of Molecular Biology, 2001, 311, 723-734
    55. Wakabayashi, M., Okada, T., Kozutsumi, Y., Matsuzaki, K., ” GM1 ganglioside-mediated accumulation of amyloid β-protein on cell membranes.”Biochemical and Biophysical Communications, 2005, 328, 1019-1023
    56. Kakio, A., Nishimoto, S., Kozutsumi, Y., and Matsuzaki, K.,” Formation of a membrane-active form of amyloid β-protein in raft-like model membranes.” Biochemical and Biophysical Research Communications, 2003, 303, 514-518
    57. 林佳佳,”穿膜胜肽與生物細胞膜間的交互作用之探討(Ι)-膽固醇的含量對蜂毒胜肽穿膜機制之影響,”碩士論文, 國立中央大學化學工程與材料工程研究所, 2004
    58. Bokvist, M., Lindstrom, F., Watts, A., and Grobner, G., ”Two Types of Alzheimer’s β-Amyloid (1-40) Peptide Membrane Interactions:Aggregation Preventing Transmembrane Anchoring Versus Accelerated Surface Fibril Formation.” Journal of Molecular Biology, 2004, 335, 1039-1049
    59. Wang, S.-S., Rymer, D. L., and Good, T. A., ” Reduction in Cholesterol and Sialic Acid Content Protects Cells from the Toxic Effects of β-Amyloid Peptides.” The Journal of biological chemistry, 2001, 276, 42027-42034
    60. Maltseva, E., Kerth, A., Blume, A., Möhwald, H., and Brezesinski, G., ”Adsorption of Amyloid

    QR CODE
    :::