| 研究生: |
劉顥程 Hao-Cheng Liu |
|---|---|
| 論文名稱: |
製造系統之無人搬運車的控制問題研究 A Study on AGV Control Problems in Manufacturing Systems |
| 指導教授: |
何應欽
Ying-Chin Ho |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理研究所 Graduate Institute of Industrial Management |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | hot lot 、模糊理論 、多屬性方法 、負載選擇 、無人搬運車 、派車法則 |
| 外文關鍵詞: | Fuzzy, multiple-attribute, hot lot, vehicle dispatching, AGVs, load selection |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在發展無人化自動搬運車(AGVs)的派車方法。物料搬運在很多環境是非常重要的,例如,港口、倉儲、TFT-LCD與半導體無塵室。在自動化物料搬運設備中,無人化自動搬運車是最常見的,因為無人化自動搬運車可以很容易的適應環境,也很容易隨環境或是設備改變,變更行走路線。於是,已經有很多工廠使用無人化自動搬運車負責物料搬運。派車法則對無人化自動搬運車的能力有很重大的影響。所以本研究專注於發展無人化自動搬運車的派車方法。本研究發展了三個派車方法分別針對三個不同的環境。第一,本研究發展一個Fuzzy Logic Control (FLC)於一個job shop的環境中派遣無人化自動搬運車。第二,本研究利用分群的概念提出一個派車方法,該方法可以同時解決由Ho and Chien (2006)定義的四個派遣多載量無人化自動搬運車子問題中的兩個子問題。第三,本研究針對TFT-LCD工廠中的hot lot問題,發展出Fuzzy-Based Dynamic Bidding (FBDB)派車方法,期該法可以降低hot lot對系統帶來的負面影響。本研究利用電腦模擬測試本研究所提出的方法,而實驗結果也證實了三個方法的優越性。
This study focuses on developing dispatching method for Automatic Guided Vehicles (AGVs) system in a manufacturing system. Material handling is critical in many facilities and manufacturing systems such as seaports, warehouse, TFT-LCD fabs, and semiconductor fabs. Among automatic material handling systems, AGVs is the most common because AGVs adapt easily to layout routes. Therefore, a lot of companies have utilized AGVs for material handling. Dispatching rule is essential to AGV’s transportation capability. Therefore, this study focuses on developing dispatching rules to dispatch AGVs. Three dispatching rules are developed for three different systems in this study. First, a Fuzzy Logic Control (FLC) is proposed for dispatching AGVs in a job shop environment. Second, a clustering-based method is proposed to solve two sub-problems of dispatching multiple-load AGVs, which are defined by Ho and Chien (2006), simultaneously. Third, a Fuzzy-Based Dynamic Bidding (FBDB) method is developed for dispatch AGVs to reduce the negative impact brought by hot lots in a TFT-LCD fab. Computer simulation is used to examine the proposed methods, and the superiority of the proposed methods is given by analyzing the results.
References
1. Bartholdi JJ, Platzman LK., 1989. Decentralized control of automated guided vehicles on a simple loop. IIE Transactions, 21(1):76–81.
2. Bilge Ü, Esenduran G, Varol N, Öztürk Z, Aydin B, Alp A., 2006. Multi-attribute responsive dispatching strategies for automated guided vehicles. International Journal of Production Economics , 100(1):65-75.
3. Bilge Ü, Tanchoco JMA., 1997. AGV systems with multi-load carriers: Basic issues and potential benefits, Journal of Manufacturing Systems, 16(3):159-74.
4. Bozer YA, Yen CK., 1996. Intelligent dispatching rules for trip-based material handling systems. Journal of Manufacturing Systems, 15(4):226-39.
5. Dabbas, R. M., Chen, H. M., Fowler, J. W., and Shunk, Dan., 2001. A combined dispatching criteria approach to scheduling semiconductor manufacturing systems. Computers & industrial engineering, 39(3-4), 307-324.
6. DeJong, C. D., and Wu, S. P., 2002. Simulating the Transport and Scheduling of Priority Lots in Semiconductor Factories. 2002 Winter Simulation Conference. 2, 1387-1391.
7. Egbelu PJ, Tanchoco JMA., 1984. Characterization of automatic guided vehicle dispatching rules. International Journal of Production Research, 22(3):359-74.
8. Egbelu PJ., 1987. The use of non-simulation approaches in estimating vehicle requirements in an automated guided vehicle based transport system. Material Flow, 4(1-2):17-32.
9. Ehteshami, B., Petrakian, R. G., and Shabe, P. M., 1992. Trade-offs in cycle time management: hot lots. IEEE transactions on semiconductor manufacturing, 5(2), 101-106.
10. Gaskins RJ, Tanchoco JMA, Taghaboni F., 1989, Virtual flow paths for free-ranging automated guided vehicle systems. International Journal of Production Research, 27(1):91-100.
11. Gupta, A.K., Ganesan, V.K., and Sivakumar, A.I., 2004. Hot lot management: minimizing cycle time in batch processes. 2004 IEEE International Engineering Management Conference” 3, 1217-1221.
12. Ho YC, Shaw HC., 2000. The performance of multiple-load AGV systems under different guide path configurations and vehicle control strategies. International Journal of Manufacturing Technology and Management, 1(2/3):218-31.
13. Ho YC, Chien SH., 2006. A simulation study on the performance of delivery dispatching rules for multiple-load AGVs. International Journal of Production Research, 44(20):4193-222.
14. Ho YC, Liu HC., 2006. A simulation study on the performance of pickup-dispatching rules for multiple-load AGVs. Computers and Industrial Engineering, 51(3):445-63.
15. Ho YC, Liu HC., 2009. The performance of load-selection rules and pickup-dispatching rules for multiple-load AGVs. Journal of Manufacturing Systems, 28(1):1-10.
16. Hwang, H., and Kim, S.H., 1998, Development of dispatching rules for automated guided vehicle systems. Journal of Manufacturing Systems, 17(2), 137-143
17. Jang, J., Shu, J., and Ferreira P.L., 2001. An AGV routing policy reflecting the current and future state of semiconductor and LCD production lines. International journal of production research 39(17), 3901-3921.
18. Jeong, B.H., and Randhawa, S. U., 2001. A multi-attribute dispatching rule for automated guided vehicle systems. International Journal of Production Research, 39(13), 2817-2832.
19. Klein, C.M., and Kim, J., 1996. AGV dispatching. International Journal of Production Research, 34(1), 95-110.
20. King RE, Hodgson TJ, Monteith SK. Evaluation of heuristic control strategies for AGVs under varying demand arrival patterns, In J.A. White and I.W. Pence Jr. (Ed.) Progress in Material handling and logistics. New York, NY: Springer-Verlag; 1989.
21. Kim SH, Hwang H., 1999. An adaptive dispatching algorithm for automated guided vehicles based on an evolutionary process. International Journal of Production Economics, 60-61:465-472.
22. Law AM, Kelton WD. Simulation modeling and analysis. Boston: McGraw-Hill; 2000.
23. Lee, Y. H., and Lee, B., 2003. Push-pull production planning of the re-entrant process. International Journal of Advanced Manufacturing Technology 22(11), 922-931.
24. Lin, J. T., F. K. Wang, and Chang Y.M., 2006. A hybrid push/pull-dispatching rule for a photobay in a 300 mm wafer fab. Robotics and computer-integrated manufacturing, 22(1), 47-55.
25. Min. H. S., a. Yih., Y., 2003. Selection of dispatching rules on multiple dispatching decision points in real-time scheduling of a semiconductor wafer fabrication system. Internal Journal of Production Research, 41(16), 3921-3941.
26. Narahari, Y., and Khan L. M., 1997. Modeling the effect of hot lots in semiconductor manufacturing systems. IEEE transactions on semiconductor manufacturing, 10(1), 185-188.
27. Occeña LG, Yokota T., 1991. Modeling of an automated guided vehicle system (AGVS) in a just-in-time (JIT) environment. International Journal of Production Research, 29(3):495-511.
28. Occeña LG, Yokota T., 1993. Analysis of the AGV loading capacity in a JIT environment. Journal of Manufacturing System, 12(1):24-35.
29. Ozden, M., 1988. A simulation study of multiple-load-carrying automated guided vehicles in a flexible manufacturing system. International Journal of Production Research, 26(8):1353-66.
30. Park, B. C., Choi, Byoung K, Kim, Byung H. ,and Lee, Jin H., 2008. "Simulation Based Planning and Scheduling System for TFT-LCD FAB." 2008 Winter Simulation Conference. 2271-2276.
31. Russell RS, Tanchoco JMA., 1984. An evaluation of vehicle dispatching rules and their effect on shop performance. Material Flow, 1:271-80.
32. Schmidt, K., 2007. "Improving Priority Lot Cycle Times." 2007 IEEE/SEMI Advanced Semiconductor Manufacturing Conference. 117-121.
33. Sabuncuoglu I, Hommertzheim DL., 1992. Dynamic dispatching algorithm for scheduling machines and automated guided vehicles in a flexible manufacturing system. International Journal of Production Research, 30(5):1059-79.
34. Tanchoco JMA, Co CG. Real-time control strategies for multiple-load AGVs. In J.M.A. Tanchoco (Ed.) Material flow systems in manufacturing (1st ed., pp. 300-331). London: Chapman & Hall;1994.
35. Tan, K.K., Tang, K.Z., 2001. Vehicle dispatching system based on Taguchi-tuned fuzzy rules. European Journal of Operational Research, 128, 545–557.
36. Tyan, J. C., Du, T. C., Chen, J. C., and Chang I. H., 2004. Multiple response optimization in a fully automated FAB: an integrated tool and vehicle dispatching strategy. Computers & industrial engineering, 46(1), 121-139.
37. Yim DS, Linnt RJ., 1993. Push and pull rules for dispatching automated guided vehicles in a flexible manufacturing system. International Journal of Production Research, 31(1):43-57.