跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李克濤
Ko-Tao Lee
論文名稱: 利用濕式蝕刻製作圖樣化藍寶石基板於發光二極體之研究
A study on patterned sapphire substrates light-emitting diodes by using wet etching
指導教授: 張正陽
Jeng-Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 95
語文別: 中文
論文頁數: 49
中文關鍵詞: 圖樣化藍寶石基板發光二極體垂直式發光二極體雷射剝落法濕蝕刻
外文關鍵詞: patterned sapphire substrate, light-emitting diode, vertical-type LED, chemical wet etching, laser lift-off
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討使用化學濕式蝕刻法來蝕刻藍寶石基板及其在雷射剝落法製作垂直式藍色發光二極體上之應用。化學濕式蝕刻其優點在於製程快速、成本低廉、選擇性佳且蝕刻之晶面光滑。圖樣化藍寶石基板可以降低氮化鎵磊晶層之錯位密度,提升磊晶品質,不同線寬之光柵式圖形對發光效率有不同之影響。圓洞狀圖樣化藍寶石基板可將發光二極體之電激發光強度提升2倍強。另外,使用晶片鍵合技術及雷射剝落法將氮化鎵磊晶層由散熱差的藍寶石基板移轉至散熱好的矽基板上製作之垂直式藍色發光二極體,並藉由在單一雷射脈衝區域內不同位置之光激發光光譜品質改變,了解脈衝雷射轟擊對氮化鎵磊晶層之影響。最後我們結合濕式蝕刻、晶片鍵合及雷射剝落技術製作出高品質氮化鎵磊晶之垂直式發光二極體。此一製程可在雷射剝落製程後完成垂直式之出光側之光柵圖形轉印,直接製作出光表面處理,提升其光激發光強度達2.86倍。


    In this study, we prepared a patterned sapphire substrate by chemical wet etching for the fabrication of vertical type blue light-emitting diode by laser lift-off process. The advantages of chemical wet etching are fast process, low cost, good selectivity and smooth etching surface. The patterned sapphire substrate can decrease the dislocation density of GaN epilayer and improve the luminous efficacy, which is also a function of the line-width of stripe grating patterns. The intensity of electroluminescence of the circular patterned sapphire substrate light-emitting diode is 2 times large than the conventional LED. The wafer bonding and laser lift-off techniques were used to transfer GaN epilayer from sapphire substrate to silicon substrate to form the vertical type light-emitting diode. In addition, we investigated the impact of pulsed excimer laser epilayer by examining the photoluminescence spectra on different sites of GaN after the laser lift-off process. We will combine chemical wet etching, wafer bonding and laser lift-off techniques to fabricate the light-emitting diode with high quality GaN epilayers. Thd pattern can be transferred after laser lift-off process and increase the photoluminence intensity to 2.86 times large than conventional structures.

    第一章 前言 .......................1 1.1 發光二極體目前之發展 ..............1 1.2 研究動機 ....................3 1.3 論文簡介 ....................3 第二章 實驗原理及文獻回顧 ................5 2.1 藍寶石基板之材料特性 .............5 2.2 氮化鎵磊晶與錯位的產生 ............6 2.3 圖樣化藍寶石基板對氮化鎵磊晶之影響.......7 2.4 濕式蝕刻製作圖樣化藍寶石基板之優缺點 .....10 第三章 製作流程及步驟 ..................11 3.1 濕式蝕刻製作藍寶石基板之實驗方法及步驟 ....11 3.2 發光二極體製程 ................13 3.3.1 蝕刻平台之製作 ..............13 3.3.2 P型透明電極導電層區域製作.........13 3.3.3 N型電極導電層及P型銲墊區域製作 ......14 3.3 製程儀器簡介 .................15 3.4 量測系統簡介 .................16 第四章 圖樣化藍寶石基板發光二極體之結果與討論 ......20 4.1 藍寶石基板之濕式蝕刻面及磊晶 .........20 4.2 直條狀圖樣化藍寶石基板 ............22 4.2.1 寬度對發光效率之影響 ..........22 4.2.2 深度對發光效率之影響 ..........25 4.3 圓洞狀圖樣化藍寶石基板.............27 第五章 圖樣化藍寶石基板用於垂直式發光二極體 .......30 5.1 垂直式發光二極體之結構 ............30 5.1.1 製程之優點 ...............30 5.1.2 製作流程 ................31 5.2 脈衝雷射對氮化鎵層之影響 ...........33 5.2.1 脈衝雷射轟擊之破壞 ...........33 5.2.2 光激發光之影響 .............36 5.3 圖樣化藍寶石基板用於垂直式發光二極體 .....39 5.3.1 圖樣化藍寶石基板與垂直式結合之優點 ...39 5.3.2 高品質氮化鎵磊晶之垂直式發光二極體製程.39 5.3.3 高品質氮化鎵磊晶垂直式發光二極體之量測.40 第六章 結論與未來展望 ..................44 參考資料 ........................46

    [1] S. Nakamura, T. Mukai and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687 (1994).
    [2] Hung-Wen Huang, C. C. Kao, J. T. Chu, H. C. Kuo, S. C. Wang and C. C. Yu, “Improvement of InGaN–GaN Light-Emitting Diode PerformanceWith a Nano-Roughened p-GaN Surface”, IEEE Phot. Tech. Lett., vol. 17, 983 (2005).
    [3] Chao-Chih Yang, Ray-Hua Horng, Chia-En Lee, Wen-Yu Lin, Kuan-Fu Pan, Ying-Yong Su and Dong-Sing Wuu, “Improvement in Extraction Efficiency of GaN-Based Light-Emitting Diodes with Textured Surface Layer by Natural Lithography”, Jap. Soc. Appl. Phys., vol.44, 2525 (2005).
    [4] J. Shakya, J. Y. Lin and H. X. Jiang, “Time-resolved electroluminescence studies of III-nitride ultraviolet photonic-crystal light-emitting diodes”, Appl. Phys. Lett., vol.85, 2104 (2004).
    [5] Chih-Chiang Kao, Hao-Chung Kuo, Hung-Wen Huang, Jung-Tang Chu, Yu-Chun Peng, Y.-L. Hsieh, C.Y. Luo, Shing-Chung Wang, Chang-Chin Yu and Chia-Feng Lin, “Light-output enhancement in a nitride-based light-emitting diode with 22 degree undercut sidewalls”, IEEE Phot. Tech. Lett., vol.17, 19 (2005).
    [6] 吳麗雲,國立中央大學機械工程研究所碩士論文 (2006)。
    [7] S. K. Hong, B. J. Kim, H. S. Park, Y. Park, S. Y. Yoon and T. I. Kim, ‘‘Evaluation of nanopipes in MOCVD grown(0001)GaN/Al2O3 by wet chemical etching’’, J. Cryt. Grow., vol. 191, 275 (1998).
    [8] S. Nakamura, T. Mukai and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue light-emitting diodes” , Appl. Phys. Lett., vol. 64, 1687 (1994).
    [9] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. Denbaars and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett., vol. 68, 643 (1996).
    [10] Bhattacharya , “Semiconductor Optoelectric Devices”, Prentice Hall
    [11] D.Hull , ‘‘Introduction to Dislocations’’, 2nd Edition.Pergamon Press, Oxford.
    [12] X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells”, Appl. Phys. Lett., vol. 72, 692 (1998).
    [13] S. Keller, G. Parish, J. S. Speck, S. P. DenBaars and U. K. Mishra, “Dislocation reduction in GaN films through selective island growth of InGaN“, Appl. Phys. Lett., vol. 77, 2665 (2000).
    [14] J.W.Matthews,‘‘Epitaxial Growth’’,Academic, New York.
    [15] Michael Kneissl, Thomas L. Paoli, Peter Kiesel, David W. Treat, Mark Teepe, Naoko Miyashita and Noble M.Johnson, “Two-section InGaN multiple-quantum-well laser diode with integrated electroabsorption modulator”, Appl. Phys. Lett., vol. 80, 3283 (2002).
    [16] S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed., Ch. 2, Wiley, New York, (1981).
    [17] Woei-Kai Wang, Dong-Sing Wuu, Shu-Hei Lin, Pin Han, Ray-Hua Horng, Ta-Cheng Hsu, Donald Tai-Chan Huo, Ming-Jiunn Jou, Yuan-Hsin Yu and Aikey Lin, “Efficiency Improvement of Near-ultraviolet InGaN LEDs Using Patterned Sapphire Substrates,” IEEE J. Ouan. Elec., vol. 41, 1403-1409 (2005).
    [18] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo and S. C. Wang, “Enhancing the Output Power of GaN-Based LEDs Grown on Wet-Etched Patterned Sapphire Substrates,” IEEE Phot. Tech. Lett., vol. 18, 1152 (2006).
    [19] Ching-Cherng Sun,Chao-Ying Lin and Tsung-Xian Lee, “Enhancement of light extraction of GaN-based light-emitting diodes with a microstructure array”, Opt. Eng., vol. 43, pp. 1700 (2004).
    [20] J. T. Chu, H. W. Huang, C. C. Kao, W. D. Liang, F.I Lai, C. F. Chu, H. C. Kuo and S. C. Wang, “Fabrication of Large-Area GaN-Based Light-Emitting Diodes on Cu Substrate”, Jap. J. Appl. Phys., vol. 44, 2509 (2005).
    [21] W. S. Wong and T. Sands, N. W. Cheung, M. Kneissi, D. P. Bour, P. Mei, L. T. Romano and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett., vol. 75, 1360 (1999).
    [22] W. S. Wong and T. Sands, N. M. Cheung, M. Kneissi, D. P. Bour, P. Mei, L. T. Romano and N. M. Johnson, “InxGa1-xN light emitting diodes on Si substrates fabricated by Pd–In metal bonding and laser lift-off,” Appl. Phys. Lett., vol. 77, 2822-2824 (2000).
    [23] X. A. Cao and S. D. Arthur, “High-power and reliable operation of vertical light-emitting diodes on bulk GaN,” Appl. Phys. Lett., vol. 85, 3971-3973 (2004).
    [24] C. F. Chu, F. I Lai, J. T. Chu, C. C. Yu, C. F. Lin, H. C. Kuo, and S. C. Wang, “Study of GaN light-emitting diodes fabricated by laser lift-off technique,” J. Appl. Phys., vol. 95, 3916 (2004).
    [25] V. T. Nikolai, R. Lasse, Y. T. Andrei, H. Juho, H. H. Passv, L. Helge, “Photoinduced electron transfer in phytochlorin-[60] fullerene dyads,” J. Am. Chem. Soc., vol. 121, 9378 (1999).
    [26] Stjepan Lugomer, “Laser Technology: Laser Driven Processes,” Prentice Hall, NJ, p.74 (1990).

    QR CODE
    :::