| 研究生: |
梁朝富 Chao-Fu Liang |
|---|---|
| 論文名稱: |
電腦搜尋之短非同調區塊碼的進階結果 Further Results on Computer-searched Short Noncoherent Block Codes |
| 指導教授: |
魏瑞益
Ruey-Yi Wei |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 相差編碼 、非同調 、區塊碼 |
| 外文關鍵詞: | noncoherent, block code, differential encoding |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用固定星座圖與沒有固定結構星座圖的碼搜尋已經被提出了,但沒有固定結構星座圖的碼搜尋,過去只有碼字長度等於2的兩個例子。因此,本論文針對碼字長度、碼字個數增加的非同調區塊碼,從給定的非同調距離去搜尋碼字,並且考慮沒有固定結構的碼,提出了幾種演算法來搜尋碼字組成碼,為的是讓碼具有大的最小非同調距離,模擬結果亦顯示此種沒有結構的區塊碼的錯誤效能比使用固定星座圖的區塊碼來得好。
近來有篇論文提出使用查表法的差分編碼。根據此篇論文,另一種建立相差編碼表的方式被提出,稱為補碼字(codeword-added)演算法。補碼字演算法可簡單的建出星座點個數比群組個數多的相差編碼表,像是使用三十二點的正交振幅調變(32QAM)建立出16個群組的相差編碼表。本篇論文對補碼字演算法加了一個步驟,修改後的演算法所產生16個群組的三十二點的正交振幅調變(32QAM)相差編碼表有更好的錯誤率。除此之外,也把修改後的補碼字演算法用來建立區塊長度更長的相差編碼表。
Searching codewords with certain and uncertain constellation has been proposed. In the case of using uncertain constellation, there were only two cases while codeword length is equal than 2. Therefore, we search noncoherent block codes for greater codeword length and numbers according to a given noncoherent distance with uncertain constellation. We propose several algorithms to find codewords for building up unstructured codes with longer noncoherent distance. The results show that the error performance of unstructured block code is better than the block code using certain constellation.
Recently, a new paper of differential encoding by a look-up table was proposed. According that paper, there was another algorithm proposed as well, called codeword-added algorithm to build up a differential encoding table. Codeword-added algorithm can easily build up a differential encoding table when the numbers of constellation points are larger than the numbers of groups like the differential encoding table for 32QAM with sixteen groups. In this thesis, we add one step to codeword-added algorithm and construct a differential encoding table for 32QAM with sixteen groups as well. And its error performance is better than before. Besides, we also use the changed codeword-added algorithm to construct differential encoding tables which has longer block length.
[1] R. Knopp and H. Leib, “M-ary coding for the noncoherent AWGN channel,” IEEE Trans. Inform. Theory, vol. 40, pp. 1968-1984, Nov. 1994.
[2] R. Y. Wei, “Nocoherent block-coded MPSK,” IEEE Trans. Commun., vol. 53, pp.978-986, June 2005.
[3] R. Y. Wei and Y. M. Chen, “Further results on noncoherent block-coded MPSK,” IEEE Trans. Commun., vol. 56, no. 10, pp. 1616-1625, Oct. 2008.
[4] U. Wachsmann, R. F. H. Fischer and J. B. Huber, “Multilevel codes: theoretical concepts and practical design rules,” IEEE Trans. Inform. Theory, vol. 45, pp. 1361-1391, July 1999.
[5] R. Y. Wei, S. S. Gu, and T. C. Sue, “Noncoherent block-coded TAPSK, ” IEEE Trans. Commun., vol. 57, no. 11, pp. 3195-3198, Nov. 2009.
[6] R. Y. Wei, T. S. Lin and S. S. Gu, “Noncoherent block-coded TAPSK and 16QAM using linear component codes, ” IEEE Trans. Commun., vol. 58, no. 9, pp. 2493-2498, Sep. 2010.
[7] R. Y. Wei, “Differential encoding by a look-up table for quadrature amplitude
modulation,” IEEE Trans. Commun., vol. 59, pp. 84-94, Jan. 2011.
[8] H. Imai and S. Hirakawa, “A new multilevel coding method using error correcting codes,” IEEE Trans. Inform. Theory, vol. 23, pp. 371-376, May 1977.
[9] S. Sayegh, “A class of optimum block codes in signal space,” IEEE Trans. Commun., vol. 30, pp. 1043-1045, Oct. 1986.
[10] T. Kasami, T. Takata, T. Fujiwara and S. Lin, “On multilevel block modulation codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 965-975, July 1991.
[11] U. Wachsmann, R. F. H. Fischer and J. B. Huber, “Multilevel codes: theoretical concepts and practical design rules,” IEEE Trans. Inform. Theory, vol. 45, pp. 1361-1391, July 1999.
[12] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. 28, pp. 55-67, Jan. 1982.
[13] F. W. Sun and H. Leib, “Multiple-phase codes for detection without carrier phase reference,” IEEE Trans. Inform. Theory, vol. 44, pp. 1477-1491, July 1998.
[14] M. L. McCloud, M. Brehler, and M. K. Varanasi, “Signal design and convolutional coding for noncoherent space-time communication on the block-Rayleigh-fading channel,” IEEE Trans. Inform. Theory, vol. 48, pp. 1186-1194, May 2002.
[15] K. Zeger and A. Gersho, “Pseudo-fray coding,” IEEE Trans. Commun., vol. 38, pp 2147-2158, Dec. 1990.
[16] Y. Li and X. G. Xia, “Constellation mapping for space-time matrix modulation with iterative demodulation/decoding,”IEEE Trans. Commun., vol. 53, pp 764-768, Nov. 2005.
[17] 謝佩恩,“以電腦搜尋之短非同調區塊碼”國立中央大學通訊工程研究所,碩士論文, 六月. 2011.
[18] R. Y. Wei, T. S. Lin and S. S. Gu, ‘‘Block-coded 16QAM for noncoherent decoding,’’ to appear in Proc. IEEE Wireless Communications and Networking Conference (WCNC), Sydney, Apr. 2010.