| 研究生: |
曾冠棋 Kuan-Chi Tseng |
|---|---|
| 論文名稱: |
製備鈦-鈷金屬氧化物奈米纖維與其本質催化性質之研究 Fabricaton of Ti-Co metal oxide nanofibers with improved intrinisic peroxidase-like activity |
| 指導教授: |
李勝偉
Sheng-Wei Lee 李勝隆 Sheng-Long Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 鈦-鈷金屬氧化物 、Co2TiO4 、靜電紡絲 、過氧化物酶物質 |
| 外文關鍵詞: | Titanium-Cobalt metal oxide, Co2TiO4, Electrospinning, Peroxidase mimic |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來文獻指出二氧化鈦與四氧化三鈷皆具有類似過氧化物物質催化活性(peroxidase activity),可將過氧化氫與不同的指示劑中進行本質類過氧化物催化,如TMB。有機物分解過程中時常會產生過氧化氫,例如葡萄糖氧化酶(GOx)可將葡萄糖氧化成葡萄糖酸與過氧化氫,利用比色法可以有效的偵測葡萄糖濃度。而且鈦-鈷金屬氧化物利用此催化作用於暗室下,在降解有機染料部分於本研究中有著顯著的效果。本實驗主要要探討與尋找最佳參數之鈦-鈷金屬氧化物本質催化有效地進行葡萄糖檢測與RhB有機染料降解。
本研究以靜電紡絲法控制鈷鈦金屬離子莫爾數比,製備出直徑範圍150~250nm的一維奈米結構,並利用XRD, SEM, TEM進行材料分析。其中Co2TiO4有優異的本質過氧化酶活性,研究發現其會在本質催化反應的過程中分解出同為過過氧化物酶物質之CoTiO3 和Co3O4,使其在反應過程中會因分解進而有更大表面積,使得其在葡萄糖檢測及染料降解有相當大的潛力。
Recently, many research has shown that Titanium dioxide and cobalt(II) dicobalt(III) oxide exhibit intrinsic peroxidase-like activity towards classical peroxidase substrates such as 3,3,5,5,-tetramethylbenzdine (TMB) in the presence of H2O2. It is well-known that H2O2 is the main product of the glucose oxidase (GOX)-catalyzed reaction. Since it can be catalyzed by Titanium-Cobalt metal oxide to produce the color signal, the colorimetric detection of glucose can be realized. More interestingly, the Titanium-Cobalt metal oxide nanofibers showed powerful ability towards activation of H2O2, displaying outstanding dark catalytic activity for the degradation of organic dye. As peroxidase mimetics, Titanium-Cobalt metal oxide nanofibers were used for colorimetric determination of glucose and degradation of organic dye RhB.
In this study, we control the Moore ratio of cobalt and titanium ions of electrospinning precursor. The diameter of nanofibers is in the range of 150 ~ 250 nm . The as-prepared sample was characterized in detail by XRD, SEM, TEM. We found that Co2TiO4 nanofibers were decompose to the mixture of CoTiO3 and Co3O4 after catalysis. It indicate that Co2TiO4 nanofibers can increase surface area by decomposition and show the best peroxidase activity.
[1]. A.A. Ismail, D.W. Bahnemann, "Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms", Journal of Materials Chemistry, vol. 21 (2011) 11686.
[2] A.L. Linsebigler, G. Lu, J.T. Yates Jr, "Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results", Chemical Reviews, vol. 95 (1995) 735-758.
[3] M. Landmann, E. Rauls, W.G. Schmidt, " The electronic structure and optical response of rutile, anatase and brookite TiO2", Journal of Physics: Condensed Matter , vol. 24 (2012) 195503
[4] S.D. Mo, W.Y. Ching, "Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite", Physical Review B, vol. 51 (1995) 13023-13032.
[5] A. Mills, S. Le Hunte, " An overview of semiconductor photocatalysis ", Journal of Photochemistry and Photobiology A: Chemistry, vol. 108 (1997) 1-35.
[6] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, "Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires", Nano Letters, vol. 2 (2002) 717-720.
[7] B. Liu, E.S. Aydil, "Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells", Journal of the American Chemical Society, vol. 131 (2009) 3985-3990.
[8] J.M. Macak, H.Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, "Smooth anodic TiO2 nanotubes", Angewandte Chemie International Edition, vol. 44 (2005) 7463-7465.
[9] N. Wu, J. Wang, D.N. Tafen, H. Wang, J.-G. Zheng, et al., "Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts", Journal of the American Chemical Society, vol. 132 (2010) 6679-6685.
[10] C. Xiong, K.J. Balkus, "Fabrication of TiO2 nanofibers from a mesoporous silica film", Chemistry of materials, vol. 17 (2005) 5136-5140.
[11] N. Yamazoe, G. Sakai, K. Shimanoe, "Oxide semiconductor gas sensors", Catalysis Surveys from Asia, vol. 7 (2003) 63-75
[12] N. Barsan, D. Koziej, U. Weimar, "Metal oxide-based gas sensor research: How to? ", Sensors and Actuators B, vol. 121 (2007) 18–35
[13] F. Fang, J. Futter, A. Markwitz and J. Kennedy, "UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method ",Nanotechnology, vol. 20 (2009) 245502
[14] D. R. Miller, S. A. Akbar, P. A. Morris, "Nanoscale metal oxide-based heterojunctions for gas sensing: A review", Sensors and Actuators B: Chemical, vol. 204 (2014) 250–272
[15] G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, C.A. Grimes, "A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination", Journal of Materials Research, vol. 19 (2004) 628-634.
[16] A. Sclafani, J. Herrmann, "Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions", The Journal of Physical Chemistry, vol.100 (1996) 13655-13661.
[17] J. Gong, Y. Li, Z. Hu, Z. Zhou, Y. Deng, "Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers", The Journal of Physical Chemistry C, vol.114 (2010) 9970-9974.
[18] J.M. Skoner, K.T. Pitman, "Facial plastic and reconstructive surgery," Third Edition, Head Neck, (2010).
[19] A.K. Kafi, G. Wu, A. Chen, "A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays", Biosensors and Bioelectronics, vol. 24 (2008) 566-571.
[20] S. Huang, G. Schlichthörl, A. Nozik, M. Grätzel, A. Frank, "Charge recombination in dye-sensitized nanocrystalline TiO2solar cells", The Journal of Physical Chemistry B, vol.101 (1997) 2576-2582.
[21] M. Grätzel, "Photoelectrochemical cells", Nature, vol.414 (2001) 338-344.
[22] X. Zhang, B. Lu, R. Li , C. Fan , Z. Liang, P. Han, "Structural, electronic and optical properties of ilmenite ATiO3 (A=Fe, Co, Ni) ", Materials Science in Semiconductor Processing, vol.39 (2015) 6–16.
[23] X. Chu, X. Liu, G. Wang, and G. Meng, "Preparation and gas-sensing properties of nano-CoTiO3", Materials Research Bulletin, Vol. 34 (1999) 1789–1795.
[24] H. Y. He, "Humidity sensitivity of CoTiO3 thin film prepared by sol–gel method", Materials Technology, Vol. 22 (2007) 95–97.
[25] Y. Q. Liang, Z. D. Cui, S. L. Zhu, Z. Y. Li, X. J. Yang, Y. J. Chen and J. M. Ma, "Design of a highly sensitive ethanol sensor using a nano-coaxial p-Co3O4/n-TiO2 heterojunction synthesized at low temperature", Nanoscale, Vol. 5 (2013) 10916-10926.
[26] Y. Shao, W. Chen, E. Wold, J. Paul, "Dispersion and electronic structure of titania-supported cobalt and cobalt oxide", Langmuir, Vol. 10 (1994)178-187.
[27] I. Ganesh, A.K. Gupta, P.P. Kumar, P.S. Chandra Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, " Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications ",Materials Chemistry and Physics, vol. 135 (2012) 220-234.
[28] Y. Qu, W. Zhou, and H. Fu , "Porous Cobalt Titanate Nanorod: A New Candidate for Visible Light-Driven Photocatalytic Water Oxidation", ChemCatChem, vol. 6(2014) 265-270.
[29]T. M. Pan, T. F. Lei, T. S. Chao, K. L. Chang, and K. C. Hsiehc, "High quality ultrathin CoTiO3 high-k gate dielectrics", Electrochemical and Solid-State Letters, vol. 3 (2000) 433-434.
[30]S. H. Chuang, R. H. Gao, D. Y. Wang, H. P. Liu, L. M. Chen, M. Y. Chiang, "Synthesis and characterization of ilmenite-type cobalt titanate powder", vol. 57(2010) 932–937
[31] M.P. Zheng, M.Y. Gu, Y.P. Jin, H.H. Wang, P.F. Zu, P. Tao, J.B. He, "Effects of PVP on structure of TiO2 prepared by the sol–gel process ", Materials Science and Engineering: B, vol.87 (2001)197
[32] L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, "Intrinsic peroxidase-like activity of ferromagnetic nanoparticles," Nature nanotechnology, vol. 2 (2007) 577-583.
[33] D. Baird, "Discovering the nanoscale", (2004).
[34] F. Mizutani, S. Yabuki, "Rapid determination of glucose and sucrose by an amperometric glucose-sensing electrode combined with an invertase/mutarotaseattached measuring cell," Biosensors and Bioelectronics,vol. 12 (1997) 1013-1020.
[35] C. Radhakumary, K. Sreenivasan, "Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles," Analytical Chemistry, vol. 83 (2011) 2829-2833.
[36]X. Chen, X. Tian, B. Su, Z. Huang, X. Chen, M. Oyama, "Au nanoparticles on citrate-functionalized graphene nanosheets with a high peroxidase-like performance," Dalton Transactions, vol. 43 (2014) 7449-7454.
[37] L. Hu, Y. Yuan, L. Zhang, J. Zhao, S. Majeed, G. Xu, "Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection," Analytica Chimica Acta, vol. 762 (2013) 83-86.
[38] Y. Chen, H. Cao, W. Shi, H. Liu, Y. Huang, "Fe-Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing," Chemical Communications, vol. 49 (2013)5013-5015.
[39]X. Cao, N. Wang, "A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays," Analyst, vol. 136 (2011)4241-4246.
[40]J. Mu, Y. Wang, M. Zhao, L. Zhang, "Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles," Chemical Communications, vol. 48 (2012) 2540-2542.
[41]L. Zhang, L. Han, P. Hu, L. Wang and S. Dong, "TiO2 nanotube arrays: intrinsic peroxidase mimetics " Chemical Communications, vol. 49(2013) 10480-10482.
[42] H. Lv, L. Ma, P. Zeng, D. Ke, T. Peng, "Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light," Journal of Materials Chemistry, vol. 20 (2010) 3665-3672.
[43]Y. Hou, X. Li, Q. Zhao, G. Chen,"ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: facile synthesis, improved activity and photocatalytic mechanism," Applied Catalysis B: Environmental, vol. 142–143 (2013) 80-88.
[44] K.N. Chaudhari, N.K. Chaudhari, J.S. Yu, "Peroxidase mimic activity of hematite iron oxides (small alpha-Fe2O3) with different nanostructures," Catalysis Science & Technology, vol. 2 (2012) 119-124.
[45] Y. Xu, M. A. A. Schoonen, "The absolute energy positions of conduction and valence bands of selected semiconducting minerals,"American Mineralogist, vol. 85 (2000) 543 -556.
[46] K.T. Jacob , G. Rajitha, "Role of entropy in the stability of cobalt titanates," The Journal of Chemical Thermodynamics, vol. 42 (2010) 879–885.
[47] N. Sakamoto, "Magnetic properties of cobalt titanate," Journal of the Physical Society of Japan, vol. 17 (1962) 99-102.
[48] K.H. Buchel, H.H. Moretto, P. Woditsch, "Industrial Inorganic Chemistry, second ed," Wiley–VCH, (2000).
[49] J. Xiao, Q. Kuang, S. Yang, F. Xiao, S. Wang, L. Guo, "Surface structure dependent electrocatalytic activity of Co3O4 anchored on graphene sheets toward oxygen reduction reaction," Scientific Reports , (2013) 3, 2300
[50] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, "Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries," Nature, vol. 407, (2000) 496-499.
[51] K. Ramachandram, C. O. Oriakhi, M. M. Lerner, V. R. Koch, "Intercalation chemistry of cobalt and nickel dioxides: A facile route to new compounds containing organocations," Materials Research Bulletin , vol.31 (1996) 767-772.
[52] W.Y. Li, L.N. Xu, J. Chen, "Co3O4 nanomaterials in lithium-ion batteries and gas sensors," Advanced Functional Materials, vol.15( 2005) 851-857.
[53] T. Maruyama, S. Arai, "Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition," Journal of The Electrochemical Society, vol. 143 (1996) 1383-1386.
[54] T. Amna, M.S. Hassan, M-S. Khil, I. H. Hwang, "Interaction of magnetic cobalt based titanium dioxide nanofibers with muscle cells: in vitro cytotoxicity evaluation," Journal of Sol-Gel Science and Technology, vol. 69 (2014) 338-344.
[55] Q. Wang, S. Liu, H. Sun, and Q. Lu, "Synthesis and intrinsic peroxidase-like activity of sisal-like cobalt oxide architectures," Industrial & Engineering Chemistry Research, vol.53 (2014) 7917−7922.
[56] Y. Yang, J. Cui, P. Yi, X. Zheng, X. Guo, W. Wang, "Effects of nanoparticle additives on the properties of agarose polymer electrolytes ," Journal of Power Sources, vol. 248 (2014) 988-993