跳到主要內容

簡易檢索 / 詳目顯示

研究生: 范姜凱
Kai FanJiang
論文名稱: 非影像式全髖關節置換手術導引系統
The image-free navigation system for total hip arthroplasty
指導教授: 曾清秀
Ching-Show Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 57
中文關鍵詞: 全髖關節置換手術骨科手術手術導引
外文關鍵詞: total hip arthroplasty, orthopaedic surgery, surgical navigation system
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在傳統的全髖關節置換手術中,醫師憑藉著臨床經驗以及器械輔助進行髖臼擴孔與植入人工髖臼杯,其過程中不易掌握器械與植入物方位,因而影響手術的品質。本研究發展一套非影像式全髖關節置換手術導引系統,於手術中電腦可即時顯示器械或植入物與規劃路徑之方位關係,使醫生能夠精準的掌握器械之方位,達成手術導引之目的。
    本研究依照下列步驟依序進行:方位轉換校準、器械方位對正與追蹤、術中導引、術後評估。首先在方位轉換校準方面上,利用探針點取病患骨盆上之解剖特徵定義出前骨盆面及骨盆座標系統作為參考座標系統,再配合正交向量對應法,計算出各座標系統間之轉換關係。接下來,利用自行設計之對正器量測出器械與器械上DRF之方位轉換關係,透過光學式定位系統追蹤其DRF之方位轉換至追蹤器械之方位。並將器械之即時方位與規劃植入之方位顯示於電腦螢幕上,輔助醫生進行擴孔以及髖臼杯之植入。最後在術後評估時,追蹤人工髖臼杯與股骨頸之方向以模擬出其運動範圍以及追蹤大腿長度變化量,提供醫生修正股骨頸方向與尺寸或是作為術後評估之參考資訊。
    系統測試是將兩組髖臼杯植入骨盆切骨模型中,之後由X光片驗證得知所植入之髖臼杯外翻角與前傾角誤差在3°以內。又在理論誤差上,若前上髂棘與恥骨結節取點誤差在5mm的範圍內時,外翻角誤差在5°內,前傾角誤差在6°內。由實驗估計大腿長度變化量之量測誤差約在3mm內。


    摘 要 I 目 錄 II 圖 目 錄 IV 表 目 錄 VI 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 研究方法 3 1-4 論文介紹 4 第二章 系統架構 5 2-1 硬體架構 5 2-1-1 光學式定位裝置 6 2-1-2 手術器械 9 2-2 軟體架構 10 第三章 全髖關節置換術定位導引 15 3-1 系統作業流程 15 3-2 座標系統定義 19 3-3 方位轉換校準 22 3-3-1 轉換矩陣 22 3-3-2 座標系統間轉換關係 23 3-3-3 骨盆座標系統與骨盆上DRF座標系統間轉換關係 24 3-3-4 器械座標系統與器械上DRF座標系統間轉換關係 25 3-4 髖臼杯植入角度之定義與決定 27 3-5 髖關節運動描述與運動範圍 29 3-5-1 彎曲與伸展 31 3-5-2 內、外旋轉 32 3-5-3 外展與內收 34 3-6 大腿長度變化量之量測 35 第四章 結果與討論 38 4-1 誤差分析 38 4-1-1 前骨盆面與骨盆座標系統定義之誤差 38 4-1-2 器械方位對正之誤差 40 4-1-3 髖臼中心位置及半徑之量測誤差 43 4-1-4 大腿長度變化量之量測誤差 46 4-2 模型切除實驗 48 第五章 結論 53 參考文獻 55

    [1] AESCULAP AG & CO. KG, Germany, http://www.orthopilot.com/
    [2] BrainLAB,Germany, http://www.brainlab.com/
    [3] Craig, J. J., Introduction to Robotics Mechanics and Control 2nd Ed., Addison Wesley, Chapter 2, 1989.
    [4] Graichen, F., Bergmann, G., and Rohlmann, A., “Hip endoprosthesis for in vivo measurement of joint force and temperature,” J.Biomechanics, Vol. 32 , pp.1113-1117, 1999.
    [5] Grützner, P. A., Zheng, G., Langlotz, U., et. al., “C-arm based navigation in total hip arthroplasty background and clinical experience,” Injury, Int. J. Care Injured, Vol. 35, pp. 90-95, 2004.
    [6] Guéziec, A., Kazanzides, P., Willamson, B., et. al., “Anatomy based registration of CT-Scan and intrapoerative X-ray image for guiding a surgical robot,” IEEE Transactions on Medical Imaging , Vol. 17, No. 5, pp.715-728, 1998.
    [7] Honl, M., Dierk, O., and Gauck, C., “Comparison of robotic-assisted and manual implantation of a primary total hip replacement ,” J. Bone and Joint Surgery ,Vol. 85, pp. 1470-1478, 2003.
    [8] Jaramaz, B., Nikou, C., DiGioia, A. M., et. al., “An image guided navigation system for accurate alignment in total hip replacement surgery,” Clinical orthopaedics and related research, No. 354, pp. 70-81, 1998.
    [9] Jaramaz, B., Nikou, C., Simon, D.A., et. al., “ Range of motion after total hip arthroplasty: Experimental verification of the analytical simulator,” Robotics Institute, Carnegie Mellon University, CMU-RI-TR-97-09, 1997.
    [10] Kennon, R. E., Keggi, J. M., and Keggi, K. J., “The anterior approach to HIP Arthroplasty: The short, single minimally invasive incision,” Operative Techniques in Orthopaedics, Vol. 14, pp. 85-93, 2004.
    [11] Kinamed Inc., http://www.kinamed.com/naviProHip.html
    [12] Medtronic Inc., U.S.A., http://www.stealthstation.com/index.jsp
    [13] Murphy, S. B., “ Technique of tissue-preserving, Minimallt-invasive total hip arthroplasty using a superior capsulotomy,” Operative Techniques in Orthopaedics, Vol. 14, No. 2 , pp. 94-101, 2004.
    [14] Taylor, R. H., Joskowicz, L., Williamson, B., et. al., “Computer- integrated revision total hip replacement surgery:concept and preliminary results,” Medical Image Analysis, Vol. 3,No. 3, pp.301-319
    [15] Schroeder, W. J. and Martin, K. M., The Visualization Toolkit 3nd Ed., Kitware, Inc., 1999.
    [16] Simon, D., Jaramaz, B., Blackwell, M., et. al., “Development and validation of a navigational guidance system for acetabular implant placement,” Medical Robotics and Computer Assisted Surgery, pp. 583-592, 1997.
    [17] Yoshimine, F. and Ginbayashib, K., “A mathematical formula to calculate the theoretical range of motionfor total hip replacement,” J. Biomechanics, Vol. 35 pp. 989-993 , 2002.
    [18] Yoshimine, F., “The influence of the oscillation angle and the neck anteversion of the prosthesis on the cup safe-zone that fulfills the criteria for range of motion in total hiprep lacements. The required oscillation angle for an acceptable cup safe-zone,” J. Biomechanics, Vol. 38, pp. 125-132, 2005.
    [19] Widmer, K. H. and Grützner, P. A., “Joint replacement-total hip replacement with CT-based navigation,” Injury, Int. J. Care Injured Vol. 35, pp. 84-89, 2004.
    [20] Zheng, G., Marx, A., Langlotz, U., et. al., “A hybrid CT-Free navigation system for total hip arthroplasty,” Computer Aided Surgery, Vol. 7, pp. 129-145, 2002.
    [21] 顏兆萱,“全膝關節置換手術導引系統”,碩士論文,中央大學機械工程研究所, 2004.

    QR CODE
    :::