跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王慧中
Hui-Chung Wang
論文名稱: 有機電光材料修飾之硒化鎘奈米粒子的合成及性質研究
Synthesis and Property of CdSe Nanoparticles Coated with Organic Electroluminescent Materials
指導教授: 王添福
Tein-Fu Wang
吳春桂
Chun-Guey Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 92
語文別: 中文
論文頁數: 78
中文關鍵詞: 奈米粒子硒化鎘核層結構
外文關鍵詞: nanocrystals, CdSe
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要研究CdSe與CdSe/ZnS的合成及光學性質,並討論奈米粒子與吸附於其表面的有機發光團間的能量轉移。我們以膠體合成法合成CdSe奈米粒子,利用反應時間控制粒子的大小,得到粒徑為2.4 nm – 3.8 nm,吸收光譜範圍為498nm – 589 nm,放光光譜為506 nm – 603 nm之粒子。使用Zn(C2H5)2/(TMS)2S合成高穩定性與高量子產率(63.5%),核層結構的CdSe/ZnS。
    使用不同性質的有機基團修飾粒子表面,使其可溶於不同的溶劑中,做更廣泛的應用。使用硫基乙酸修飾奈米粒子,可使粒子溶於水相中。另外選擇具光電性質的有機發光團,如:苯炔共軛分子和三茀化合物。當光激發在 ligand上時,得到奈米粒子的放光有消光情形,這是因為CdSe的LUMO比ligand低,電子容易轉移到奈米粒子上,形成電荷分離的情形;當光激發在奈米粒子的吸收上時,粒子放光強度沒有變化,這可能是因為奈米粒子的LUMO較ligand高,所以ligand上的電子不易轉移到奈米粒子上。


    Cadmium selenide nanoparticles passivated with organic conjugated oligomer and/or terfluorenes were prepared and their optoelectronic properties investigated. The CdSe nanoparticles were synthesized by use of the less toxic CdO. The diameter of the nanoparticles could be controlled by the reaction temperature and the reaction time. Particles ranged from 2.4 nm to 3.8 nm with narrow size distribution were obtained, as evidenced by TEM. The core, CdSe was protected by ZnS shell to increase the stability as well as the quantum yield. Sight red shifts of the absorption and fluorenscence of the core/shell structure than that of the core only structure were observed.
    When passivated with a water soluble mercaptoacetic acid, the resultant organic passivated nanoparticles became soluble in water. Conjugated oligomer passivated nanoparticles show unusual optoelectronic property. Excitation of the organic material resulted in change separation as supported by the fluorescence qnenching of the emission of the nanoparticles. When the excition was selected only on the nanoparticles, the emission intensity from the nanoparticles stay comparable to that of the unpassivated nanoparticles. The energy diagram that showed the LUMO of nanoparticle is lower than that chromophor was therefore proposed.

    目錄 中文摘要…………………………………….……………………..….Ⅰ 英文摘要……………………………….……….……………….…….Ⅱ 目錄…………………………………….……….……………………..Ⅲ 第一章 緒論……………………………………………………….1 1-1 前言………………………………………………………....1 1-2 化合物半導體奈米粒子之光物理特性……………………3 1-2-1 奈米結構材料之特殊性質………………………….……….3 1-2-2 限量化效應(quantum-confinement effect)…………….…....4 1-2-3 表面修飾(surface passivation)之於光譜性質…....................6 1-2-4 核層結構材料…………………………………………….…8 1-3 低維度化合物半導體材料之合成簡介……………….......10 1-3-1 La Mer高均勻度膠體粒子成長模型……………….……..10 1-3-2 界面活性劑與表面修飾.........................................................11 1-3-3 懸浮性半導體奈米粒子檢測技術概述.................................13 1-4 螢光理論………………………………………….……….....15 1-4-1 螢光與磷光的成因…………………………………….……15 1-4-2 影響螢光之變數…………………………………………….16 1-4-3 螢光的能量轉移……………………………………………18 1-5 光學性質………………………….…………….….…..….19 第二章 實驗部分………………………….……………….……….21 2-1 藥品……………………………………………………….21 2-2 儀器…………………………………………….……..…..22 2-3 實驗步驟…………………………………………………..23 2-3-1 CdSe奈米粒子的合成……………………………..…..…..23 2-3-2 CdSe/ZnS core/shell 奈米粒子的合成……………..….…..24 2-3-3 有機發光團的合成………………………………………….25 2-3-4 奈米粒子表面的界活性劑和特殊Ligand 交換………...…29 2-3-5 原子吸收光譜測定…………………………………....….…31 第三章 結果與討論………………………………………….…….....32 3-1 CdSe奈米粒子的合成與鑑定……………………..…….…31 3-2 CdSe/ZnS奈米粒子的合成與鑑定………………..…….…35 3-2-1 光譜性質鑑定………………………………………….....…35 3-2-3 粉末X光晶體繞射……………………………..…………..40 3-3 含磷酸根的有機發光團合成………………………..….…...42 3-4 有機基團修飾奈米粒子…………………..…………………45 3-4-1 Mercaptoacetic acid (MAA)修飾奈米粒子表面…………...45 3-4-2 直鏈型的硫醇…………………………………………..…..46 3-4-3 含硫的有機發光團…………………………………….…..47 3-4-4 含磷酸根的有機發光團……………………………….…..52 3-5 電化學測量(CV)……………………………………….…..55 第四章 結論…………………………………………………..…….57 參考資料………………………………………………………..…….58 附錄一…………………………………………………………………60 1、X光光電子能譜儀簡介…………..………………….……….60 2、電化學測量簡介…………………………..………….….…….61 附錄二 NMR(1H、13C、31P)附圖……………………………….…..63 附錄三 電化學測量附圖………………………………………………77

    1. (a) Wang , L. W.:Zunger, A. Phys. Rev. B. 1996, 53, 9579 (b) Leung, K.;Pokrant, S.;Whaley, K. B. Phys. Rev. B. 1998, 57, 12291 (c) Brus, L. J . Phys. Chem. 1986, 90, 2555
    2. (a) Peng, X.;Schlamp, M. C.;Kadavanich, A.;Alivisatos, A. P. J. Am. Chem. Soc. 1997, 119, 7019 (b) Gerion, D.;Pinaud, F. Williams, S. C.;Parak, W. J. J. Phys. Chem. B 2001, 105, 8861
    3. (a) Chan, C. W.;Nie, S. Science, 1998, 281, 2016 (b) Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013 (c) Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez,M. P.; Wise, F. W.; Webb, W. W. Science 2003, 300, 1434 (d) Rosenthal, S. J.;Tomlinson, E. M.;Adkins, S.;Schroeter, S.;Adams, S.;Swafford, L.;McBride, J.;Wang, Y.;DeFelice, L. J.;Blakely, R. D. J. Am. Chem. Soc. 2002, 124, 4586 (e) Gerion, D.;Parak, W. J.;Williams, S. C.;Zanchet, D.;Micheel, C. M.;Alivisatos, A. P. J. Am. Chem. Soc. 2002, 124, 7070
    4. Peng, Z. A.;Peng, X.;J. Am. Chem. Soc. 2002, 124, 3343.
    5. Atkins, P. W., Physical Chemistry, 6thed. (1998)
    6. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226
    7. Milliron, D. J.;Alivisatos, A. P.;Pitois, C.;Edder, C.;Frechet, J. M. Adv. Mater. 2003, 15, 58
    8. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V;Heine, J. R.;Mattoussi, H.;Ober,?R.;Jensen, K. F.;Bawendi, M.G. J. Phys. Chem. B 1997, 101, 9463
    9. Derfus, A. M.;Chan, W. C.;Bhatia. S. N. Nano Lett. 2004. 4, 11
    10. Murry, C. B.;Kagan, C. R.;Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545
    11. Murray, C. B.;Noms, D. J.;Bawendi, M. G. J . Am. Chem. Soc. 1993, 115, 8706
    12. Skinner, J. L.;Moerner, W. E. J. Phys. Chem. 1996, 100, 13251
    13. Skoog, D. A.;Holler, F. J.;Nieman, T. A., Principles of Instrumental Analysis, 5thed. (1998)
    14. Coe, S.;Woo, W. K.;Bawendi, M.;Bulovic, V. Nature, 2002, 420, 800
    15. (a) Huynh, W. U.;Dittmer, J. J.;Alivisatos, A. P. Science, 2002, 295, 2425 (b) Huynh, W. U.;Peng, X.;Alivisatos, A. P. Adv. Mater. 1999, 11, 923
    16. Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183-184.
    17. Reiss, P.; Bleuse, J.; Pron, A. Nano Lett. 2002, 2, 781-784.
    18. Joswig, J. O.;Springborg, M.;Seifert, G. J. Phys. Chem. B. 2000, 104, 2617
    19. (a) Qu, L.;Yu, W. W.;Peng, X. Nano Lett. 2004. 4, 465 (b) Yu, W. W.;Qu, L.;Guo, L.;Peng, X. Chem. Mater. 2003, 15, 2854
    20. Eychm?ller, A. J. Phys. Chem. B. 2000, 104, 6514
    21. Cao, Y-W.;Banin, U. J. Am. Chem. Soc. 2000, 122, 9692
    22. Underwood, D. F.;Kippeny, T.;Rosenthal, S.J. J. Phys. Chem. B 2001, 105, 436
    23. Dorfs, D.;Henschel, H.;Kolny, J.;Eychmu1ller, A. J. Phys. Chem. B 2004, 108, 1578
    24. Mattoussia, H;Radzilowski, L. H.;Dabbousib, B. O.;Thomas, E. L.;Bawendi, M. G.;Rubner, M. F. J. Appl. Phys. 1998 , 83, 7965

    QR CODE
    :::