| 研究生: |
郭婷怡 Ting-Yi Kuo |
|---|---|
| 論文名稱: |
含有醯胺基團之乙炔蒽衍生物:取代基團位置對於有機凝膠之形成及固態刺激響應行為之研究 Ethylanthracene Derivatives with Amide-functional group:Investigation of Gel formation and Stimuli-responsive Behavior in Solid state with Different Substitute group. |
| 指導教授: |
孫世勝
Shih-Sheng Sun 陳銘洲 Ming-Chou Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 185 |
| 中文關鍵詞: | 有機凝膠分子 、超分子自組裝 、固態刺激響應行為材料 、蒽 、醯胺 |
| 外文關鍵詞: | Organogels, supramolecular self-assembly, solid-state stimuli-responsive behavior, anthracene, amide |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們合成了含有醯胺基團之乙炔蒽衍生物,以不同取代基團(FB10、FB14)去探討其形成凝膠的能力與固態刺激響應行為。在形成凝膠能力的測試中發現FB10、FB14在許多有機溶劑中皆可以形成凝膠,而且具有良好的形成凝膠能力,其中FB14在1-heptanol中形成凝膠的能力最好,臨界凝膠濃度為2.71 mg/mL。以變溫吸收光譜、放射光譜及不同狀態下的吸收、放射光譜探討其分子間作用力及光物理變化,得知會形成聚集及分子間自組裝主要以J-type aggregation 形式進行;利用 1H NMR了解凝膠分子形成凝膠主要是以分子間的氫鍵、-作用力及 C-H···作用力而成。透過SEM 的觀察,其凝膠分子會自組裝排列成纖維結構或球形結構,其中FB10在p-xylene經由快速冷卻與慢速冷卻過程所形成的凝膠會有不同的微觀結構,FB10與FB14在不同溶劑中也能呈現網狀、細絲狀或球狀的微觀結構。在固態行為研究中,我們利用PXRD來探討形成乾凝膠後的堆疊模式,並對FB10與FB14的粉末進行刺激響應行為測試,其中發現FB10的B form粉末對於熱與機械力的刺激有良好的響應行為,FB14則是可以利用溶劑沉澱形成與原始粉末不同堆疊模式的粉末,對酸蒸氣也有響應行為的表現。
We synthesized two anthracene-based organogelators, FB10 and FB14, respectively, containing long-chain perfluoro-alkoxyl and pyridine dicarboxamide function groups. These gelators are able to transform into organogels, when it presented in different organic solvents. As indicated inside the thesis, when it comes to comparing the properties between FB10 and FB14, the latter exhibits a better ability to form stable gel inside the 1-heptanol (the critical gelation concentration was 2.71 mg/mL). After in-depth investigation, we found that in the presence of perfluoroalkyl chain not only plays a key role in forming gel, but also influences their physical properties. A variety of spectroscopic methods were applied to identify the intermolecular interactions upon gel formation and explore the photo-physical properties. The primary driving forces for the gel formation are intermolecular hydrogen bonding, aromatic π-π, and C-H-πinteractions. The supramolecular aggregates in these organogels are considered to be J-type aggregation. SEM morphologies on the xerogels reveal that the gelators can self-assemble into fibers or spheres. On the other hand, when the gelator, FB10, went through rapid and slow cooling process signifying different SEM morphologies, when it dissolved in p-xylene (which has an ability to form gel). The gel formed by FB10 and FB14 in different solvents can also present filament, fibers or spheres on SEM morphologies. Moreover, we utilized PXRD to explore the stacking mode of xerogels as well as testing the stimulus response behavior between FB10 and FB14. Finding B form powder of FB10 have both interesting thermochromism and piezochromism behaviors;FB14 can use solvent to precipitate forming powder with different stacking mode from the original powder and possess acidochromism behavior.
1. Terech, P.; Weiss, R. G. Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chem. Rev. 1997, 97, 3133-3160.
2. Sangeetha, N. M.; Maitra, U. Supramolecular gels: Functions and uses. Chem. Soc. Rev. 2005, 34, 821-836.
3. Maity, G. C., Low Molecular Mass Gelators of Organic Liquids. J. Phys. Sci. 2007, 11, 156-171.
4. von Lipowitz, A. Versuche und Resultate über die Löslichkeit der Harnsäure Liebigs Ann. Chem. Pharm. 1841, 38, 348-355.
5. Flory, P. J. Introductory Lecture. Faraday Discuss. Chem. Soc. 1974, 57, 7-18
6. Lloyd, D. J. The problem of gel structure, In Colloid Chemistry, Alexander, J.; ed.
The Chemical Catalogue Company, New York, USA, 1926, 767-782.
7. Yu, G., Yan, X., Han, C., Huang, F. Characterization of supramolecular gels Chem. Soc. Rev., 2013, 42, 6697-6722.
8. Piepenbrock, M. O. M.; Lloyd, G. O.; Clarke, N.; Steed, J. W. Metal- and anion-binding supramolecular gels J. W. Chem. Rev. 2010, 110, 1960-2004.
9. Abdallah, D. J.; Weiss, R. G. n-Alkanes Gel n-Alkanes (and Many Other Organic Liquids) Langmuir 2000, 16, 352-355.
10. Twieg, R. J.; Russell, T. P.; Siemens, R.; Rabolt, J. F. Observations of a gel phase in binary mixtures of semifluorinated n-alkanes with hydrocarbon liquids Macromolecules 1985, 18, 1361-1362.
11. Tomalia, D. A. Fluorine makes a difference Nat. Mater. 2003, 2, 711-712.
12. Young, C. L. Upper critical solution temperature of perfluoro-n-alkane and n-alkane mixtures Trans. Faraday Soc. 1969, 65, 2639-2644.
13. Shi, C.; Huang Z.; Kilic, S.; Xu J.; Enick, R. M.; Beckman, E. J.; Carr, A. J.; Melendez, R. E.; Hamilton, A. E. The Gelation of CO2: A Sustainable Route to the Creation of Microcellular Materials Science 1999, 286, 1540-1543.
14. Esch, J. H. van; Feringa, B. L. New Funtional Materials Based on Self-Assembling Organogels : Form Secondipity towards Design Angew. Chem. Int. Ed. 2000, 39, 2663-2666.
15. George, M.; Snyder, S. L.; Terech, P.; Glinka C. J.; Weiss, R. G. N-Alkyl Perfluoroalkanamides as Low Molecular-Mass Organogelators. J. Am. Chem. Soc. 2003, 125, 10275-10283.
16. George, M.; Snyder, S. L.; Terech, P.; Weiss, R. G. Gelation of Perfluorinated Liquids by N-Alkyl Perfluoroalkanamides. Langmuir 2005, 21, 9970-9977.
17. Gan, J.; Bakkari, M. E.; Belin, C.; Margottin, C. L.; Godard, P.; Pozzo, J.L.; Vincent, J.M. A triblock fluorous surfactant as a specific gelator for perfluorocarbons. Chem. Commun., 2009, 34, 5133-5134.
18. Kumari, H.; Armitage, S.E.; Kline, S.R.; Damodaran, K.K.; Kennedy, S.R.; Atwood, R.L.; Steed, J.L. Fluorous ‘ponytails’ lead to strong gelators showing thermally induced structure evolution. Soft Matter, 2015, 11, 8471-8478.
19. Hashimoto, M.; Ujiie; S.; Mori, A. Low Molecular Weight Gelators with Hexagonal Order in Their Liquid‐Crystal Phases and Gel States: 5‐Cyano‐2‐(3,4,5‐trialkoxybenzoylamino)tropones. Adv. Mater. 2003, 15, 797-800.
20. Zhai, Y.; Chai, W.; Cao, W.; Sun, Z.; Huang, Y. Organogelators based on p-alkoxylbenzamide and their self-assembling properties. Front. Chem. Sci. Eng. 2015, 9,488-493.
21. Podder, D.; Chowdhury, S.R.; Nandi, S. K.; Haldar, D. Tripeptide based super-organogelators: structure and function.New J. Chem., 2019, 43, 3743-3749.
22. George, S. J.; Ajayaghosh, A. Self‐Assembled Nanotapes of Oligo(p‐phenylene vinylene)s: Sol–Gel‐Controlled Optical Properties in Fluorescent π‐Electronic Gels. Chem. Eur. J. 2005, 11, 3217-3227.
23. Wu1rthner, F.; Hanke, B.; Lysetska, M.; Lambright, G.; Harms, G. S. Org. Lett. 2005, 7, 6, 967-970.
24. Yang, H. K.; Zhao, H.; Yang, P. R.; Huang, C.H. Gelation of a Highly Fluorescent Urea-Functionalized Perylene Bisimide Dye. Colloids Surf. A 2017, 535, 242-250.
25. Shan, Y.; Li, S.; Luo, D.; Wang, R.; Wu, F.; Zhong, C.; Zhu, L. Fluorescent nanofiber film based on a simple organogelator for highly efficient detection of TFA vapour. New J. Chem. 2018, 42, 2089-2093.
26. Breton, G. W.; Vang, X. Photodimerization of Anthracene. J. Chem. Educ. 1998, 75, 81-82.
27. Xu, J. F.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Dynamic Covalent Bond Based on Reversible Photo [4 + 4] Cycloaddition of Anthracene for Construction of Double-Dynamic Polymers. Org. Lett. 2013, 15, 24, 6148-6151.
28. Klaper, m.; Wessig, P.; Linker, T. Base catalysed decomposition of anthracene endoperoxide. Chem. Commun., 2016, 52, 1210-1213.
29. Fidder, H.; Lauer, A.; Freyer, W.; Koeppe, B.; Heyne, K. Photochemistry of Anthracene-9,10-endoperoxide. J. Phys. Chem. A, 2009, 113, 6289-6296.
30. Wang, C.; Zhang, D.; Wiang, J.; Zhu, D. New Organogels Based on an Anthracene Derivative with One Urea Group and Its Photodimer: Fluorescence Enhancement after Gelation. Langmuir 2007, 23, 9195-9200.
31. Rajamalli, P.; Prasad, E. Low Molecular Weight Fluorescent Organogel for Fluoride Ion Detection. Org. Lett. 2011, 13, 3714-3717.
32. Wei, J.; Chai, Q.; He, L.; Bai, B.; Wang, H.; Li, M. An anthracene-based organogel with colorimetric fluoride-responsive and fluorescence-enhanced properties. Tetrahedron 2016, 72, 3073-3076.
33. Bai, B.; Zhang, M.; Ji, N.; Wei, Wang, H.; Li, M. E–Z isomerization of the –C[double bond, length as m-dash]N– bond in anthracene-based acylhydrazone derivatives under visible light. Chem. Commun. 2017, 53, 2693-2696.
34. Zhang, X.; Liu, J.; Gao, Y.; Hao, J.; Hu, J.; Ju, Y. Multi-stimuli-responsive hydrogels of gluconamide-tailored anthracene. Soft Matter 2019, 15, 4662-4668.
35. Mondal, S.; Bairi, P.; Das, S.; Nandi, A. K. Phase selective organogel from an imine based gelator for use in oil spill recovery. J. Mater. Chem. A 2019, 7, 381-392.
36. Beck, J. B.; Rowan, S. J. Multistimuli, Multiresponsive Metallo-Supramolecular Polymers. J. Am. Chem. Soc. 2003, 125, 13922-13923.
37. Kawano, S. I.; Fujita, N.; Shinkai, S. A Coordination Gelator That Shows a Reversible Chromatic Change and Sol−Gel Phase-Transition Behavior upon Oxidative/Reductive Stimuli. J. Am. Chem. Soc. 2004, 126, 8592-8593.
38. Chang, K. C.; Lin, J. L.; Shen, Y. T.; Hung, C. Y.; Chen, C. Y.; Sun, S. S. Synthesis and Photophysical Properties of Self‐Assembled Metallogels of Platinum(II) Acetylide Complexes with Elaborate Long‐Chain Pyridine‐2,6‐Dicarboxamides. Chem. - Eur. J. 2012, 18, 1312-1321.
39. Chen, P.; Li, Q.; Grindy, S.; Holten-Andersen, N. White-Light-Emitting Lanthanide Metallogels with Tunable Luminescence and Reversible Stimuli-Responsive Properties. J. Am. Chem. Soc. 2015, 137, 11590-11593.
40. Duan, P.; Yanai, N.; Nagatomi, H.; Kimizuka, N. Photon Upconversion in Supramolecular Gel Matrixes: Spontaneous Accumulation of Light-Harvesting Donor–Acceptor Arrays in Nanofibers and Acquired Air Stability. J. Am. Chem. Soc. 2015, 137, 1887-1894.
41. Kim, D.; Kwon, J. E.; Park, S. Y. Fully Reversible Multistate Fluorescence Switching: Organogel System Consisting of Luminescent Cyanostilbene and Turn‐On Diarylethene. Adv. Funct. Mater. 2018, 28, 1706213.
42. Gao, Z.; Han, Y.; Wang, F. Cooperative supramolecular polymers with anthracene‒endoperoxide photo-switching for fluorescent anti-counterfeiting. Nat. Commun. 2018, 9, 3977.
43. Han, Y.; Liu, M.; Zhong, R.; Gao, Z.; Chen, Z.; Zhang, M.; Wang, F. Photoresponsiveness of Anthracene-Based Supramolecular Polymers Regulated via a σ-Platinated 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene Photosensitizer. Inorg. Chem. 2019, 58, 12407-12414.
44. Mo, S.; Meng, Q; Wan, S.; Su, Z.; Yan, H.; Tang, B. Z.; Yin, M. Tunable Mechanoresponsive Self‐Assembly of an Amide‐Linked Dyad with Dual Sensitivity of Photochromism and Mechanochromism. Adv. Funct. Mater. 2017, 27, 1701210.
45. Sun, Q.; Wang, H.; Xu, X.; Lu, Y.; Xue, S.; Zhang, H.; Yang, W. 9,10-Bis((Z)-2-phenyl-2-(pyridin-2-yl)vinyl)anthracene:Aggregation-induced emission, mechanochromic luminescence, and reversible volatile acids-amines switching. Dyes Pigm. 2018, 149, 407-414.
46. Ma, Z.; Ji, Y.; Lan, Y.; Kuang, G.-C.; Jia, X. Two novel rhodamine-based molecules with different mechanochromic and photochromic properties in solid state. J. Mater. Chem. C 2018, 6, 2270-2274.
47. Naeem, K. C.; Subhakumari, A.; Varughesec, S.; Nair, V. C. Heteroatom induced contrasting effects on the stimuli responsive properties of anthracene based donor–π–acceptor fluorophores. J. Mater. Chem. C 2015, 3, 10225-10231.
48. Hsu, L. Y.; Maity, S.; Matsunaga, Y.; Hsu, Y. F.; Liu, Y. F.; Peng, S. M.; Shinmyozu, T.; Yang, J. S. Photomechanochromic vs. mechanochromic fluorescence of a unichromophoric bimodal molecular solid: multicolour fluorescence patterning. Chem. Sci. 2018, 9, 8990-9001.
49. Seidel, N.; Hahn, T.; Liebing, S.; Seichter, W.; Kortus, J.; Weber, E. Synthesis and properties of new 9,10-anthraquinone derived compounds for molecular electronics. New J. Chem. 2013, 37, 601-610.
50. Tsvetkov, N. P.; Gonzalez-Rodriguez, E.; Hughes, A.; Gomes, G. D. P. ; White, F. D.; Kuriakose, F.; Alabugin, I. V. Radical Alkyne peri-Annulation Reactions for the Synthesis of Functionalized Phenalenes, Benzanthrenes, and Olympicene. Angew. Chem. Int. Ed. 2018, 57, 651-3655.
51. Xiao, Q.; Ranasinghe, R. T.; Tang, A. P. M.; Brown, T. Naphthalenyl- and anthracenyl-ethynyl dT analogues as base discriminating fluorescent nucleosides and intramolecular energy transfer donors in oligonucleotide probes. Tetrahedron 2007, 63, 3483-3490.
52. Horváth, G.; Rusa, C.; Köntös, Z.; Gerencsér, J.; Huszthy, P. A new efficient method for the preparation of 2,6-pyridinedimethyl ditosylates from dimethyl 2,6-pyridinedicarboxylates. Synth. Commun. 1999, 3719-3731.
53. Pryor, K. E.; Shipps, G. W.; Skyler, D. A.; Rebek, J. The activated core approach to combinatorial chemistry: A selection of new core molecules. Tetrahedron 1998, 54, 4107-4124.
54. Das, K.; Nakade, H.; Penelle, J.; Rotello, V. M. The activated core approach to combinatorial chemistry: A selection of new core molecules. Macromolecules 2004, 37, 310-314.
55. Selva, M.; Tundo, P.; Perosa, A. Reaction of Functionalized Anilines with Dimethyl Carbonate over NaY Faujasite. 3. Chemoselectivity toward Mono-N-methylation. J. Org. Chem. 2003, 68, 19, 7374-7378.
56. Kapustikova, I.; Bak, A.; Gonec, T.; Kos, J.; Kozik, T.; Jampilek, J. Investigation of Hydro-Lipophilic Properties of N-Alkoxyphenylhydroxynaphthalenecarboxamides. Molecules 2018, 23, 1635.
57. D-C, E; Kelly, B.; Rozas, I One-step double reduction of aryl nitro and carbonyl groups using hydrazine. Tetrahedron Lett. 2011, 52, 6702-6704.
58. Buckingham, F; Calderwood, S.; Checa, B.; Keller, T.; Tredwell, M.; Collier, T. L.; Newington, I. M.; Bhalla, R.; Glaser, M.; Gouverneur, V. Oxidative fluorination of N-arylsulfonamides. J. Fluor. Chem. 2015, 180, 33-39.
59. Dijk, T. V.; Burck, S.; Rong, M. K.; Rosenthal, A. J.; Nieger, M.; Slootweg, J. C.; Lammertsma, K. Facile Synthesis of Phosphaamidines and Phosphaamidinates using Nitrilium Ions as an Imine Synthon. Angew. Chem. Int. Ed. 2014, 53, 9068 -9071.
60. Wang, W.; Kluge, J. A.; Leisk, G. G.; Kaplan, D. L. Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 2008, 29, 1054-1064.
61. 蔡孟學,疏氟效應及鉑-鉑金屬作用力之超分子凝膠自組裝行為之研究,碩士論文,國立中央大學化學研究所(2013)。
62. 呂幸紋,設計並合成含有醯胺官能基的乙炔蒽和乙炔芘衍生物之有機凝膠分子,碩士論文,國立台灣師範大化學研究所(2014)。
63. 紀國棟,含醯胺官能基之乙炔蒽衍生物的超分子自組裝行為之研究,碩士論文,國立中正大學化學暨生物化學研究所(2020)。
64. Chan, M. H.-Y.; Ng, M.; Leung, S. Y.-L.; Lam, W. H.; Yam, V. W.-W. Synthesis of Luminescent Platinum(II) 2,6-Bis(N-dodecylbenzimidazol-2-yl)pyridine Foldamers and Their Supramolecular Assembly and Metallogel Formation. J. Am. Chem. Soc. 2017, 139, 8639-8645.
65. Imura, T; Ikeda, S.; Aburai, K.; Taira, T; Kitamoto, D. Interdigitated Lamella and Bicontinuous Cubic Phases Formation from Natural Cyclic Surfactin and Its Linear Derivative. J. Oleo sci. 2013, 62, 499-503.
66. Hashimoto, Y.; Sato, T.; Goto, R.; Nagao, Y.; Mitsuishi, M.; Naganob, S.; Matsui, J. In-plane oriented highly ordered lamellar structure formation of poly(N-dodecylacrylamide) induced by humid annealing. RSC Adv. 2017, 7, 6631-6635.
67. Tsai, M. S.; Tsai, S. Y.; Huang, Y. F.; Wang, C. L.; Sun, S. S.; Yang, J. S. Hydrogen Bonding-Induced H-Aggregation for Fluorescence Turn-On of the GFP Chromophore: Supramolecular Structural Rigidity. Chem. Eur. J. 2020, 26, 5942-5945.
68. Iannone, V.; Barile1, M.; Lecce1, L. Automated fabrication of hybrid thermoplastic prepreg material to be processed by In-Situ Consolidation Automated Fiber Placement process. MATEC Web of Conferences 2018, 188, 01024.
69. Rakstys, K.; Saliba, M.; Gao, P.; Gratia, P.; Kamarauskas, E.; Paek, S.; Jankauskas, V.; Nazeeruddin, M. K. Donor–π–donor type hole transporting materials: marked π-bridge effects on optoelectronic properties, solid-state structure, and perovskite solar cell efficiency. Angew. Chem. Int. Ed. 2016, 55, 1-6.