跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭哲均
che-chun kuo
論文名稱: 覆晶技術應用於毫米波積體電路
指導教授: 詹益仁
yi-jen chan
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 116
中文關鍵詞: 共平面波導濾波器毫米波積體電路覆晶封裝
外文關鍵詞: CPW filters, MMIC, FlipChip
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文成功利用覆晶式封裝技術(Flip Chip)成功研發出覆晶式微波積體電路( Flip Chip Microwave Integrated Circuit),所設計的電路中有20GHz 放大器 13.2GHz 振盪器,其放大器模擬約在20GHz有14dB的增益,量測增益為10dB,其振盪器模擬的頻譜在13.2GHz有10dBm的振盪功率,其量測大約漂到10GHz有0dBm的振盪功率。
    本論文又提供了30GHz全新縮小型低通濾波器(1.49mm x 1.6mm),大大改善歩階式阻抗低通濾波器(Step Impedance)耗費大量面積(2.35mm x 1.6mm),並且有更好的電路特性其縮小型S21於40GHz為-31dB傳統歩階式S21於40GHz為-22dB。
    在30GHz帶通濾波器我們提供了一個較為窄頻5GHz頻寬的,以及一個基本型和其對照ACPS(Asymmetric Coplanar Striplines),縮小面積佈局的帶通濾波器
    我們還研發主動電路的實現,利用CPW設計28GHz低雜訊放大器31GHz功率放大器,其增益模擬18dB於28GHz NF2.4dB,實際量測 16dB於26GHz NF3dB
    CPW設計的功率放大器其模擬增益18dB於31GHz,Pae於1dB 23%,Pout 20dBm,實際量測增益15dB於31GHz,Pout19dBm,Pae於1dB 20%


    第一章 序 1 1.1 序論 1 1.2 論文架構 2 第二章 共面波導濾波器設計 4 2.1 共面波導的簡介,理論分析與製程方式 4 2.1.1 共平面波導的簡介 4 2.1.2 共平面波導的理論 5 2.1.3 共平面波導的製作 7 2.2 毫微米波共平面波導低通濾波器 8 2.2.1 共平面步階式阻抗濾波器 8 2.2.2 三種不同止帶極點設計 13 2.2.2.1 A類低通濾波器 15 2.2.2.2 B類低通濾波器 17 2.2.2.3 C類低通濾波器 19 2.2.3 縮小型低通濾波器設計 22 2.2.4 止帶極點縮小型低通濾波器設計 25 2.2.5 結論 27 2.3 毫微米波共面波導帶通濾波器設計 27 2.3.1 兩階帶通濾波器 28 2.3.2 三階帶通濾波器 31 2.3.3 三階ACPS帶通濾波器 34 2.4 總結 36 第三章 覆晶式(FLIP CHIP)封裝簡介 38 3.1 覆晶式封裝製程流程 38 3.2 凸塊(BUMP)製作 40 3.3 凸塊(BUMP)分析與等效電路 45 3.4 覆晶式主動元件分析 55 3.4 總結 58 第四章 覆晶式電路 59 4.1 電路製程流程 59 4.2 放大器電路設計 65 4.3 振盪器電路設計 69 4.4 總結 76 第五章 毫微米波共面波導低雜訊放大器 77 5.1 雜訊簡介 77 5.1.1 基本雜訊理論 77 5.1.2 雜訊指數定義 79 5.1.3 雙埠網路之雜訊指數 80 5.2 放大器設計 81 5.3 量測結果 85 5.4 總結 88 第六章 毫微米波共面波導低功率放大器 89 6.1 功率放大器理論 89 6.1.1 功率放大器分類 89 6.2 電路設計 93 6.3 量測結果 95 6.4 總結 97 第七章 結論 98 參考文獻 99 附錄一 共平面波導的公式推導 104 附錄二 薄膜製程 107 附錄三 最大平坦化低通濾波器元件值對照表 109 附錄四 覆晶式電路製程 110 附錄五 覆晶鍵結機(FlipChup Bonder)介紹 116

    [1] C. P. Wen, “Coplanar waveguide: A surface strip transmission line
    suitable for nonreciprocal gyromagnetic device application,” IEEE
    Trans. Microwave Theory Tech., vol. 17, pp. 1087-1090, Dec. 1969.
    [2] C.Veyres and V.F.Hanna,”Extension of the Application of Conformal Mapping Techniques to Coplanar Lines with Finite Dimension,”Int.J.Electron,Vol.48,No.1,pp.47-56,Jan.1980
    [3] S.Gevorgain , L.J.P. Linner and E.L.Kollberg,”CAD Models for Shielded Multilayered CPW,”IEEE Trans.Microwave Theory Tech,Vol43,No.4,pp.772-779.April 1995.
    [4]”FOUNDATIONS OF INTERCONNECT AND MICROSTRIP DESIGN”, Tuthor:T.C.EDWARDS AND M.B.STEER, Publishing house:WILEY
    [5] Rayit,A.K, Characteristics and Applications of Coplanar Waveguide and its Discontinuities ,PHD Dissertation , University of Bradford(UK),1997.
    [6] Beilenhoff, K.; Klingbeil, H.; Heinrich, W.; Hartnagel, H.L.
    Open and short circuits in coplanar MMIC''s
    Microwave Theory and Techniques, IEEE Transactions on , Volume: 41 Issue: 9 , Sep 1993
    Page(s): 1534 -1537
    [7] Mirshekar-Syahkal,;’Computation of equivalent circuits of CPW discontinuities using quasi-static spectral domain method’
    Microwave Theory and Techniques, IEEE Transactions on , Volume: 44 Issue: 6 , Jun 1996
    Page(s): 979 –984
    [8] A class of novel uniplanar series resonators and their implementation in original applications
    Hettak, K.; Dib, N.; Sheta, A.-F.; Toutain, S.;
    Microwave Theory and Techniques, IEEE Transactions on , Volume: 46 Issue: 9 , Sep 1998
    Page(s): 1270 -1276
    [9] Warns, C.; Menzel, W.; Schumacher, H.;’Transmission lines and passive elements for multilayer coplanar circuits on silicon’
    Microwave Theory and Techniques, IEEE Transactions on , Volume: 46 Issue: 5 , May 1998
    Page(s): 616 -622
    [10] Naghed, M.; Wolff, I.’A three-dimensional finite-difference calculation of equivalent capacitances of coplanar waveguide discontinuities’
    Microwave Symposium Digest, 1990., IEEE MTT-S International , 8-10 May 1990
    Page(s): 1143 -1146 vol.3
    [11] Naghed, M.; Wolff, I.; ‘Equivalent capacitances of coplanar waveguide discontinuities and interdigitated capacitors using a three-dimensional finite difference method’
    Microwave Theory and Techniques, IEEE Transactions on , Volume: 38 Issue: 12 , 8-10 May 1990
    Page(s): 1808 –1815
    [12] G.Gonzalez , “Microwave transistor Amplifier Analysis and Design” ,Prentice Hall, 1994, p209.
    [13] 原著:本城和彥,編譯:呂學士,書名:微波通訊半導體電路, ,出版社:全華科技圖書股份有限公司
    [14] G.D. Vendelin, A.M. Pavio, U.L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, John Wiley & Sons, Inc.,1990.
    [15] 邱思函, ”氧化鋁基板上積體化微波降頻器電路之研製,” 碩士論文, 國立中央大學, 2000
    [16] 何建廷, ” 氧化鋁基板上微波功率放大器之研製,” 碩士論文, 國立中央大學, 2000
    [17] 吳瑞峰, ” 氧化鋁基板上積體化被動元件及其微波電路設計與研製,”碩士論文,國立中央大學, 2002
    [18] 蘇碩彬,”異質接面雙極性電晶體之大訊號模型建立及其在功率放大器之應用,”碩士論文,國立中央大學, 2002
    [19] 張文華,”共面波導帶通濾波器之研究,”碩士論文,國立台灣大學,2000
    [20] 張振元,”共面波導帶通濾波器之設計,”碩士論文,國立台灣大學, 2001
    [21] 簡練,”共平面波導Ka頻段低雜訊與功率放大器之研製,”碩士論文,國立交通大學,2000
    [22] 書名:微波工程,原著:David M.Pozar,譯者:郭仁財,出版社:高立圖書有限公司
    [23] 莊博豪“C頻段與Ka頻段之積體化薄膜濾波器製作與覆晶封裝技術”碩士論文 國立中央大學 民國93年
    [24] Behzad Razavi “RF MICROELECTRONICS” 1997
    [25] Size-Reduction Techiques for CPW and ACPS Structures
    Khelifa Hettak , Tony Laneve , Malcolm G. Stubbs.
    Microwave Theory and Techniques, IEEE Transactions on , Volume: 49 , Nov 2001
    [26] David Pozar “Microwave Engineering”
    [27] A. K. Sharma and H. Wang, “Experimental models of series and shuntelements in coplanar MMIC’s,” in IEEE MTT-S Int. Microwave Symp.Dig., 1992, pp. 1349–1352.
    [28] Arai, Y.; Sato, M.; Yamada, H.T.; Hamada, T.; Nagai, K.; Fujishiro, H.; “60-GHz flip-chip assembled MIC design considering chip-substrate effect”Microwave Theory and Techniques, IEEE Transactions on , Volume: 45 , Issue: 12 , Dec. 1997 Pages:2261 – 2266
    [29] H. Sakai, Y. Ota, K. Inoue, T. Yoshida, K. Takahashi, S. Fujita, and M.Sagawa, “A novel millimeter-wave IC on Si substrate using flip-chip bonding technology,” in IEEE MTT-S Dig., San Diego, CA, May 1994,pp. 1763–1766.
    [30] G. Baumann, H. Richter, A. Baumgartner, D. Ferling, D. Hollmann,
    H. Muller, H. Nechansky, and M. Schlechtweg, “51 GHz frontend with flip chip and wire bond interconnections from GaAs MMIC’s to a planar patch antenna,” in IEEE MTT-S Dig., Orlando, FL, May 1995, pp. 1639–1642.
    [31] R. Sturdivant, “Reducing the effects of the mounting substrates on the performance of GaAs MMIC flip chips,” IEEE MTT-S Dig., San Diego, CA, May 1995, pp. 1591–1594.

    QR CODE
    :::