跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳偉豪
Wei-Hao Wu
論文名稱: 橫向等向性併構岩之製作與力學性質
The Mechanical Behavior of Artificial Transversely Isotropic Bimrock
指導教授: 田永銘
Yong-Ming Tien
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 167
中文關鍵詞: 破壞準則破壞模態岩塊體積比異向性併構岩
外文關鍵詞: failure crirerion, bimrock, anisotropic, volumetric fraction, failure mode
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 併構岩為包含著岩塊與基質二種材料所組成之岩石,其力學性質會受到異質性與異向性之影響。本研究利用不同配比之水泥與高嶺土製作橫向等向性併構岩試體,進以探討併構岩之力學行為。
    岩塊含量是用來評估併構岩整體工程性質的重要參數,本研究使用旋轉式掃描器擷取併構岩試體之表面展開影像,利用影像處理法估算併構岩試體之岩塊體積比。並擷取破壞後試體之表面展開影像觀察其破壞模態,將破壞模態分為滑動破壞模態與非滑動破壞模態兩類,其中非滑動破壞又細分為張裂破壞模態、剪力破壞模態與延性壓縮破壞模態。
    試驗結果顯示併構岩試體之破壞強度隨著圍壓增加而提高;強度異向性則隨著圍壓增加而降低。本研究並以Tien and Kuo(2001)破壞準則與FLAC有限差分軟體對併構岩試體之破壞強度、強度異向性與破壞模態進行理論模擬分析,結果顯示理論預測與試驗數據大致相符,可知此模式可求得異向性岩體之合理模擬效果。


    Bimrock is a kind of rock which contains the composition of block and matrix, its mechanical properites can be influenced by heterogeneous and anisotropy. This research is in different proportion with cement and kaolin to make transversely isotropic specimen of bimrock, then evolute to probe on mechanical behavior.
    The content of rock is an important parameter to estimate bimrock, this research use rotary scanner to pick specimen of bimrock and develope the image on the surface, use image process method to estimate the raito of specimen of bimrock.
    The result shows that the increase of confining pressure cause he destructive force to raise,and heterogeneous strength to reduce. This research use Tien and Kuo(2001) failure criterion and FLAC program to analyze the strength、heterogeneous and failure mode.the result show that prediction and experimental data are fairly agreeable.

    目 錄 摘 要 II 目 錄 III 圖目錄 VI 表目錄 XIV 第一章 緒 論 1 1.1 研究動機 1 1.2 研究內容 2 1.3 論文架構 2 第二章 文獻回顧 3 2.1 等向性與異向性併構岩之定義 3 2.2 異向性岩石之特徵與分類 4 2.2.1 異向性岩石之特徵 4 2.2.2 異向性岩石之分類 6 2.3 異向性岩石之破壞模態 8 2.4 異向性岩石之破壞準則 14 2.4.1 Jaeger (1960)破壞準則 15 2.4.2 McLamore and Gray (1967)破壞準則 18 2.4.3 Hoek and Brown (1980) 破壞準則 20 2.4.4 Tien and Kuo (2001)破壞準則 23 2.5 併購岩之相關研究 31 2.5.1 波特蘭水泥混凝土之力學性質 32 2.5.2 人造混成岩試體之力學性質 34 2.5.3 岩塊體積比的量測 43 第三章 橫向等向性併構岩試體之製作 48 3.1 併構岩試體之模擬材料選擇 48 3.1.1 模型材料的配比 49 3.1.2 岩塊材料數量估算 50 3.2 試驗儀器與設備 52 3.2.1 試體製作模組 52 3.2.2 材料試驗機系統 56 3.2.3 岩心試體鑽修設備 57 3.2.4 資料訊號量測與擷取系統 58 3.2.5 岩石三軸試驗系統 60 3.2.6 表面影像擷取設備 62 3.3 橫向等向性併構岩之製作及流程 64 3.3.1 材料準備 65 3.3.2 併構岩體之鋪層 68 3.3.3 併構岩體之壓製 70 3.3.4 岩體養護與岩心試體鑽修 71 3.3.4 試體編號 73 3.4 岩石力學性質試驗方法 74 3.4.1 單軸壓縮強度試驗 74 3.4.2 三軸壓縮強度試驗 74 第四章 併構岩試體之表面影像與體積比量測 76 4.1 併構岩之岩塊體積比量測 76 4.1.1單位重法 76 4.1.2 影像處理法 78 4.2 併構岩試體之表面影像 79 4.3 表面影像量測併構岩體積比 87 4.3.1中分法使用步驟 87 4.3.2中分法之量測結果 88 第五章 橫向等向性併構岩之力學性質 90 5.1 橫性等向性併構岩之試驗結果 90 5.1.1破壞強度 94 5.1.2 橫向等向性併構岩之異向性 96 5.2橫向等向性併構岩之破壞模態 99 5.3 試驗結果與理論模擬之比較 108 5.3.1 破壞強度之模擬分析 108 5.3.2 異向性之模擬分析 118 5.3.3 破壞模態之模擬分析 120 5.4 數值方法模擬併構岩之力學行為 123 5.4.1 網格建立 123 5.4.2 數值模擬分析結果 125 第六章 結論與建議 137 6.1 結論 137 6.2 建議 139 參考文獻 140 附錄A 中分法體積比量測結果 145 附錄B 人造異向性併構岩之力學試驗結果 147 附錄C 人造異向性併構岩之破壞包絡線 154

    1. 王仁正,「人造互層岩體之力學行為」,碩士論文,國立中央大學土木工程學系,中壢 (1995)。
    2. 田永銘,「混成岩及併構岩之力學性質」,行政院國家科學委員會專題研究計畫成果報告,中壢 (2005)。
    3. 田永銘、王仲宇、王仁正、賴逸少,「人造異向性岩體製作及其力學性質(Ⅰ)」,行政院國家科學委員會專題研究計畫成果報告,中壢 (1995)。
    4. 田永銘、許宗傑、陳慶洪,「人造異向性岩體製作及其力學性質(Ⅱ)」,行政院國家科學委員會專題研究計畫成果報告,中壢 (1996)。
    5. 田永銘、趙柏烽、楊世和,「人造異向性岩體製作及其力學性質(Ⅲ)」,行政院國家科學委員會專題研究計畫成果報告,中壢 (1997)。
    6. 古智君,「巨觀等向性併構岩之製作及其力學行為」,碩士論文,國立中央大學土木工程學系,中壢 (2004)。
    7. 林銘郎、鄭富書、翁作新、洪如江,「台灣斷層泥之特性及斷層泥力學評估新發展」,地工技術雜誌,第79期,第91-106頁 (2000)。
    8. 洪如江,「台東利吉混成岩及無根山與富里逆斷層」,地工技術,工程地質之影像,第77-89頁 (1999)。
    9. 郭明傳,「複合岩體之岩塊體積比量測及其力學行為」,博士論文,國立中央大學土木工程學系,中壢 (2005)。
    10. 許宗傑,「人造互層岩體之製作及其力學性質」,碩士論文,國立中央大學土木工程學系,中壢 (1997)。
    11. 許靖華,大地構造與沈積作用,地質出版社,北京 (1985)。
    12. 許靖華,「混成岩與台灣之混成岩構造」,中國地質學會會刊,第31卷,第二期,第87-92頁 (1988)。
    13. 黃宗義,「人造異互層岩體之組成律及破壞準則」,碩士論文,國立中央大學土木工程學系,中壢 (1995)。
    14. 孫思優,「岩石三軸室應變量測改進」,碩士論文,國立中央大學土木工程學系,中壢 (2002)。
    15. 趙柏烽,「人造異向性岩體製作及其力學行為」,碩士論文,國立中央大學土木工程學系,中壢 (1997)。
    16. 蔡文傑,「巨觀等向性混成岩製作表面影像與力學性質」,碩士論文,國立中央大學土木工程學系,中壢 (2003)。
    17. 劉哲明,「混成岩模型試體製作與體積比量測」,碩士論文,國立中央大學土木工程學系,中壢 (2002)。
    18. Allirot, D., Boehler, J. P., and Sawczuk, A., “Irreversible deformation of an anisotropic rock under hydrostatic pressure,” Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. Vol. 14, pp. 77-83 (1977).
    19. Amadei, B., Rock Anisotropy and the Theory of Stress Measurement, Springer-Verlag, Heidelberg (1983)
    20. Baddeley, A., and Jensen, E. B. V., Stereology for statisticians, Chapman and Hall, London (2005).
    21. Deere, D.U. and Miller, R.P., “Engineering classification and index properties of intact rock,” Air Force Laboratory Technical Report No. AFNL-TR-65-116, Albuquerque, NM. (1966).
    22. Donath, F. A., “Strength variation and deformational behavior in anisotropic rock.,” In State of Stress in the Earth’s Crust, Eds. Judd, W.R., Elsevier, Amsterdam, pp. 280-297 (1964).
    23. Halpin, J. C., Primer on Composite Materials Analysis, Technomic Pub. Co., Inc, Lancaster, pp. 67-98 (1984)
    24. Hoek, E. and Brown, E.T., Underground Excavations in Rock, Institution of Mining and Metallurgy, London, pp.137-162 (1980).
    25. ISRM, Rock Characterization Testing and Monitoring, Pergamon Press, Oxford (1981).
    26. Jaeger, J.C., “Shear failure of anisotropic rocks,” Geol. Mag., Vol. 97, pp.65-72 (1960).
    27. Jaeger, J. C., and Cook, N. G. W., Fundamental of Rock Mechanics, 3rd edition, Chapman & Hall, London (1979).
    28. Jones, R. M., Mechanics of Composite Materials, Scripta Book Company, Washington, D. C. (1975).
    29. Kuo, M. C., Tien, Y. M., and Chu, C. A., “Study of failure process and failure modes of interstratified rock mass with an emphasis on specimen preparation and image scanning,” The 6th North American Rock Mechanics Symposium, Houston, USA, No. 584 (2004).
    30. Lindquist, E. S., “The strength and deformation properties of mélange,” Ph.D. Dissertation, Department of Civil Engineering, University of California, Berkeley (1994).
    31. Lindquist, E. S., “The mechanical properties of a physical model mélange,” 7th International IAEG Congress, Lisbon, Portugal, pp. 819-850 (1994).
    32. Lindquist, E. S., and Goodman, R. E., “Strength and deformation properties of a physical model mélange,” Proceedings of the 1st North American Rock Mechanics Symposium, Texas, USA, pp. 843-850 (1994).
    33. McLamore, R., and Gray, K. E., “The mechanical behavior of anisotropic sedimentary rocks,” Journal of Engineering for Industry, Trans. of the ASME, Vol. 89, pp. 62-73 (1967).
    34. Medley, E. W., “Using stereological method to estimate the volumetric proportions of blocks in mélanges and similar block in matrix rocks (bimrocks),” 7th International IAEG Congress, Lisbon, Portugal, pp. 1031-1040 (1994).
    35. Medley, E. W., and Goodman, R. E., “Estimating the block volumetric proportions of mélanges and similar block-in-matrix rocks (bimrocks),” Proceedings of the 1st North American Rock Mechanics Symposium, Texas, USA, pp. 851-858 (1994).
    36. Niandou, H., Shao, J. F., Henry, J. P., and Fourmaintraux, D., “Laboratory investigation of the mechanical behavior of Tournemire shale,” International Journal of Rock Mechanics and Mining Sciences, Vol. 34, No. 1, pp. 3-16 (1997).
    37. Ramamurthy, T., Rao, G. V., and Rao, K. S., “A strength criterion for rocks,” In Proc. Indian Geotech. Conf., Roorkee, Vol. 1, pp.59-64 (1985).(間接引用自Ramamurthy, 1993)
    38. Ramamurthy, T., “Strength and modulus responses of anisotropic rocks,” In Comprehensive Rock Engineering, Vol. 1. Fundamentals, Pergamon Press, Oxford, pp.313-329 (1993).
    39. Rosiwal, A., “Ueber geometrische Gesteinsanalysen,” Verhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt Wien, pp. 143-175 (1898). (間接引用自Baddeley, A. J., and Jensen, E. B. V., 2003)
    40. Sonmez, H., Gokceoglu, C., Medley, E. W., Tuncay, E., and Nefeslioglu, H. A., “Estimating the uniaxial compressive strength of a volcanic bimrock,” International Journal of Rock Mechanics and Mining Sciences, Vol. 43, No. 4, pp. 554-561 (2006).
    41. Stimpson, B., “Modelling materials for engineering rock mechanics,” Int. J. Rock Mech. Min. Sci., Vol. 7, pp. 77-121 (1970).
    42. Sonmez, H., Tuncay, E., and Gokceoglu, C., “Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankra Agglomerete,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 5, pp. 717-729 (2004).
    43. Tien, Y. M., and Chu, C. A., “Rotary scanner for cylindrical specimens,” Proceedings of the 5th Asian Young Geotechnical Engineers Conference, Taipei, Taiwan, pp. 181-186 (2004).
    44. Tien, Y. M., and Kuo, M. C., “A failure criterion for transversely isotropic rocks,” International Journal of Rock Mechanics and Mining Sciences, Available (2006).
    45. Tien, Y. M., Kuo, M. C., and Juang, C. H., “An experimental investigation of failure mechanism of simulated transversely isotropic rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 3, pp. 399-412 (2001).
    46. Tien, Y. M. and Tsao, P. F., “Preparation and mechanical properties of artificial transversely isotropic rock,” International Journal of Rock Mechanics and Mining Sciences, Vol. 37, pp. 1001-1012 (2000).

    QR CODE
    :::