| 研究生: |
劉建林 Jian-lin Liou |
|---|---|
| 論文名稱: |
探空八號火箭酬載回收艙之氣熱動力分析 Aerothermodynamic Analysis of Reentry Capsule for Sounding Rocket VIII Mission |
| 指導教授: |
吳俊諆
Jiunn-chi Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 超高音速流 、數值模擬 、氣熱動力 、探空火箭酬載回收艙 、重返大氣流 |
| 外文關鍵詞: | reentry flow, hypersonic flow, numerical simulation, aerothermodynamics, sounding rocket capsule |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
探空八號火箭酬載任務為中山科學研究院開發之探空計畫,目的在於接續探六計劃所建構之科學酬載回收艙研發。而本文目的是以數值模擬探八回收艙在高速飛行下之流場與氣熱動力(aerothermodynamics)特性,並探討探六與探八回收艙因幾何外型效應對於氣熱動力的影響。模擬回收艙之高度為14,000 m~36,600 m;馬赫數介於0.5至6;紐森數(Knudsen number, Kn)皆小於0.01。本文採用FLUENT套裝軟體為分析工具,先針對國外的MESUR太空艙、圓球狀太空艙與探六回收艙進行模擬,以驗證本文數值模式。
經由驗證證明本文之數值模式對於流場與氣熱動力模擬有一定的精確度。由模擬結果顯示,回收艙外型由探六等比例地放大為探八,阻力係數將會增大,可使回收艙有效地減速;當探八達到馬赫數4、攻角為180度時,在停滯點有最大之壓力35.32 kPa;當馬赫數為6、攻角為180度時,表面溫度最高會達到約2700 K,且在靠近肩部位置有最大熱傳率值5 kW/m2。對於回收艙表面的壓力、溫度與熱傳率,外型改變影響則不大。而本文之模擬結果將可作為探八回收艙結構強度與防熱設計上的參考依據。
Sounding Rocket VIII Mission (SR 8) is a sounding plan developed by Chong-Shan Institute of Science and Technology, the object is to continue the development of Sounding Rocket VI Mission (SR 6). The purpose of this paper is to analyze the flow field and characteristic of aerothermodynamics of the reentry capsule of SR 8, and discuss geometrical effects between SR 8 and SR 6. The range of height in simulation is 14,000~36,600 m, Mach numbers are from 0.5 to 6, and Knudsen numbers all less than 0.01. The FLUENT software is to be the analysis tool. To verify the numerical model, this work will simulate MESUR capsule, spherical capsule and capsule for SR 6.
Through a series of verification and comparison, the accuracy of numerical model in this work has been established. Simulation predicts that the drag coefficient increase when shape of capsule for SR 6 enlarge proportionally to SR 8. As SR8 reaches to Mach number 4 and attack angle is 180o, there is maximum pressure of 35.32 kPa occurs at the stagnation point; When Mach number further increases to 6 at attack angle of 180o, surface temperature increases upto 2,700 K, in addition the heat transfer rate appears near the shoulder region with a value of 5 kW/m2. The geometry effect is mild on the surface pressure, surface temperature and heat transfer rate of the reentry capsule. The present simulation results can provide a valuable design guide on the structural strength and thermal protection of SR8 reentry capsule.
江士標、吳俊諆、蔡錫錚 (民國95年),“次軌道科學酬載計畫書”,國家太空中心計畫。
邱垂銨 (民國96年),探空火箭酬載回收艙結構之設計,國立中央大學機械工程研究所碩士論文。
張魯民 (2002),載人飛船返回艙空氣動力學,國防工業出版社,北京。
Furumoto, G.H., Zhong, X., Skiba, J.C. (1997) “Numerical studies of real-gas effects on two-dimensional hypersonic shock-wave/boundary-layer interaction,” Phys. Fluids, 9(1), 191-210.
Hirschel, E.H. (2005) Basics of Aerothermodynamics, Springer, Berlin Heidelberg.
Jiang, S.B., Tsai, S.J., Liu, L.Y., Chiu, C.A., Chou, C.J., Lee, Y.L., Tu, H.H., Chen, Y.J., Yen, H.Y. (2008) “Development, Testing and launch of the reentry capsule for sounding rocket VI mission in Taiwan,” The Fourth Asian Space Conference.
Launder, B.E., Spalding, D.B. (1972) Lectures in Mathematical Models of Turbulence, Academic Press.
MacLean, M., Mundy, E., Wadhams, T., Holden, M., Barnhardt, M., Candler, G. (2009) “Experimental and numerical study of laminar and turbulent base flow on a spherical capsule,” Paper Presented at 47TH AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2009-0783, Orlando, FL: 4-8 January 2009.
Mehta, R.C. (2006) “Numerical simulation of supersonic flow past reentry capsules,” Shock Waves, 15(1), 31-41.
Morita, Y., Kawaguchi, J., Inatani, Y., Abe, T. (2003) “Demonstrator of atmospheric reentry system with hyperbolic velocity—DASH,” Acta Astronautica, 52, 29-39.
Nakamura, H., Manabe, K., Nishio, M. (2006) “Flow patterns around the MESUR capsule traveling at supersonic/hypersonic speeds,” JSME International J., Series B, 49(2), 384-392.
National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration (1976) U. S. Standard Atmosphere, Government Printing Office, Washington D. C.
Stella, F., Paglia, F., D’Ascenzi, M., Iannuccelli, M. (2004) “Heat flux evaluation for YES2 re-entry vehicle: numerical simulation,” ICHMT International Symposium on Advances in Computational Heat Transfer, 4, 243-256.
Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J. (1995) “A new k-ε eddy-viscosity model for high Reynolds number turbulent flows - model development and validation,” Computers Fluids, 24(3), 227-238.
Wright, M.J., Prabhu, D.K., Martinez, E.R. (2006) “Analysis of Apollo command module afterbody heating part I: AS-202,” J. Thermophysics and Heat Transfer, 20(1), 16-30.
Yakhot, V., Orszag, S. A. (1986) “Renormalization group analysis of turbulence: I. basic theory,” J. Scientific Computing, 1(1), 1-51.
Yamada, T., Inatani, Y., Honda, M., Hirai, K. (2002) “Development of thermal protection system of the MUSES-C/DASH reentry capsule” Acta Astronautica, 51, 63-72.