跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳裕仁
Yu-Jen Chen
論文名稱: 量子點的光學特性研究及光學應用
Fundamental properties of quantum dots and the applications in optics
指導教授: 李正中
Cheng-Chung Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 127
中文關鍵詞: 量子能階薄膜光學量子點量子侷限史塔克效應窄帶濾光片布魯斯方程式
外文關鍵詞: confined energy level, thin-film optics, quantum dot, quantum-confined Stark effect, narrow band-pass filter, Brus equation
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究可分為兩部份,其一為量子點的光學特性,另一為量子點在光學上的應用。
    量子點的光學特性是根基於其量子侷限的能階概念,有鑑於相關的數學模型眾多,但都各自有其限制及適用的量子位能結構。因此我們自行發展一套計算量子能階、能帶的方法,Iterative Boundary Method (IBM),並由一系列的計算,比對文獻資料或實驗數據,證明它確實適用於所有型態的量子位能系統。此部份的成果並藉由CdS及CdSe/ZnS兩種量子點,經實驗驗証計算的正確,甚至指出許多文獻中對CdSe/ZnS此一核殼量子點光學特性的誤解。
    在量子點的光學應用方面,我們首先以理想中的-k材料做有系統的研究,成功地拓展現有薄膜理論,以之描述-k材料在光學薄膜上的行為及優化策略,本論文是第一個提出此”負k薄膜”概念的研究。接著我們成功製鍍出含有量子點的介電質薄膜,以窄帶濾光片為例,證實量子點在該光學薄膜內的貢獻。依據量子點特有的光學特性,此一濾光片在激發光源的開與關狀態下具有不同的穿透率,甚至可超越100%。此一現象與傳統的-k在物理意義上並不相同,文末亦指出其解釋。
    本論文成果不僅證明,量子點用在光學薄膜確實可行,且可預見此一新穎概念將為光學薄膜開啟一個全新的視野


    This thesis is distributed into two parts. The first part is about the optical properties of quantum dots. And the second part is about the applications of quantum dots in optics.
    All of the optical properties in quantum dots are based on the concept of confined energy states, or energy bands. The known mathematics tools for this issue have individual restrictions although numerous approaches are proposed. A novel approach is proposed in this thesis, Iterative Boundary Method (IBM), which is able to calculate the confined energy levels, energy bands, of any kind of potential profile. The calculations have been verified by published data, experimental results and other known approaches. Otherwise, CdS and CdSe/ZnS quantum dots are also employed to our experiments to compare with the simulations. Moreover, we find a misinterpretation exists in many published reports about CdSe/ZnS core-shell quantum dots. This mistake is figured out in this thesis and proved by IBM.
    About the applications of quantum dots in optics, we starts from an ideal that a layer owns index like dielectric layer and negative extinction coefficients. The –k layer is studied systematically including spectra, admittance and optimization of multilayers. The conventional method of thin-film optics is extended for the special layers successfully. This is the first research that provides complete analysis of –k layer and optimization.
    Consequently, optical filters with quantum dots are fabricated. Narrow band pass filters are employed to demonstrate the contribution of quantum dots in filters. These filters have different transmittance due to characteristics while exciting light is on and off, even exceeds 100% due to participation of quantum dots.
    The achievements not only carry out optical filter including negative k thin-films, but also provide a new horizon for conventional thin-film optics.

    摘 要 i Abstract ii 誌 謝 iii Contents v Figures list vii Tables list xi Chapter 1 Preface 1 Chapter 2 Introduction 3 2-1 Quantum dots 3 2-2 Mathematics models 5 2-3 Motivation 6 Chapter 3 Energy bands calculations of quantum dots 9 3-1 Introduction 9 3-2 Iterative Boundary Method 10 3-3 Single quantum dot 19 3-3-1 Single infinite well 19 3-3-2 Single finite well (double heterostructure) 21 3-3-3 V-shape potential 23 3-3-4 Parabolic potential 25 3-3-5 Tilt single-well 29 3-3-6 Irregular potential structure 36 3-4 Multi-quantum dots 38 3-4-1 Twin/Double quantum dots 38 3-4-2 Periodic Multi-Quantum-Dots 41 3-4-3 QCSE and Wannier-Stark ladder 46 3-5 Excitonic States 51 3-6 Summary of important results 54 Chapter 4 Experiments 58 4-1 Introduction 58 4-2 CdS quantum dots deposited by chemical bath deposition 62 4-2-1 Introduction (of chemical bath deposition) 62 4-2-2 Samples preparation 62 4-2-3 Particle size verified by IBM 69 4-2-4 Reaction time and Tauc plot 71 4-3 Type I quantum dots, CdSe/ZnS 74 4-3-1 Introduction 74 4-3-2 The first optical transition in CdSe/ZnS quantum dots 75 4-3-3 Stark effect of CdSe/ZnS 80 4-4 Numerical experiments 87 4-5 Summary of important results 89 Chapter 5 Applications 93 5-1 Introduction 93 5-2 Extra-high reflection filter and film matrix method 94 5-2-1 Theory of film matrix method for –k layer 94 5-2-2 Design and optimization of extra-high reflection filter 97 5-2-3 External application 102 5-3 Narrow bandpass filter and Smith’s method 103 5-3-1 Challenge of film matrix method 103 5-3-2 Smith’s method 106 5-3-3 -k and narrow bandpass filter 107 5-4 Summary of important results 111 Chapter 6 Conclusions and Perspectives 112 Appendix A. Physical Constants 113 Appendix B. Qj and φj 115 Appendix C. WKB method 116 Appendix D. Perturbation approximation 118 Appendix E. Krönig-Penney Equation 122 Appendix F. Brus equation 125 Index 127

    1. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939 (1982) [doi:10.1063/1.92959].
    2. N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, et al., “Low threshold, large T o injection laser emission from (InGa) As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).
    3. N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kopev, et al., “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
    4. B. F. Levine, “Quantum-Well Infrared Photodetectors,” J. Appl. Phys. 74, R1-R81 (1993).
    5. L. Chu, A. Zrenner, G. Bohm and G. Abstreiter, “Normal-incidnet intersubband photocurrent spectroscopy on InAs/GaAs quantum dots,” Appl. Phys. Lett. 75, 3599-3601 (1999).
    6. S. Krishna, “Quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol. 47(1-2), 153–163 (2005) [doi:10.1016/j.infrared.2005.02.020].
    7. U. Meirav and E. Foxman, “Single-electron phenomena in semiconductors,” Semicond. Sci. Technol. 11, 255-284 (1996) [doi:10.1088/0268-1242/11/3/003].
    8. D. Loss and DP DiVincenzo, "Quantum computation with quantum dots," Phys. Rev. A 57, 120-126 (1998).
    9. Prashant V. Kamat, "Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters," J. Phys. Chem. C 112(48), 18737–18753 (2008) [doi: 10.1021/jp806791s]
    10. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells.,” Chem. Rev. 110(11), 6873–6890 (2010) [doi:10.1021/cr900289f].
    11. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic acute and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nature Photonics 2, 247-250 (2008) [doi:10.1038/nphoton.2008.34].
    12. S. Coe, W. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420, 800–803 (2002) [doi:10.1038/nature01299.1.].
    13. M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. Solomon, J. Plant, and Y. Yamamoto, “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002) [doi:10.1103/PhysRevLett.89.233602].
    14. M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-Temperature Triggered Single Photon Emission from a III-Nitride Site-Controlled Nanowire Quantum Dot.,” Nano Lett. 14(2), 982–986 (2014) [doi:10.1021/nl404400d].
    15. S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range,” Nature 403(6768), 405–407 (2000) [doi:10.1038/35000166].
    16. S. Lee, J. kim, L. Jonsson, J. W. Wilkins, G. W. Bryant, and G. Kilmeck, “Electron-hole correlations in semiconductor quantum dots with tight-binding wave functions,” Phys. Rev. B 63, 195318 (2001). [doi: 10.1103/PhysRevB.63.195318]
    17. Ohno, Kaoru, Keivan Esfarjani, and Yoshiyuki Kawazoe. Ab Initio Methods, Springer Berlin Heidelberg (1999).
    18. M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 52, 11969 (1995). [doi: 10.1103/PhysRevB.52.11969]
    19. Slater, John C. "A simplification of the Hartree-Fock method." Phy. Rev. 81(3), 385 (1951).
    20. Robert Nyden Hill, “Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method,” J. Chem. Phys. 83, 1173 (1985) [doi:10.1063/1.449481].
    21. D. E. Aspnes, P. Handler, and R. Island, “Interband Dielectric Properties of Solids in an Electric Field,” Phys. Rev. 166(3) (1968).
    22. H. Sari, H. Metin, I. Sökmen, S. Elagöz, and Y. Ergün, “Stark localization and mixing phenomena between different Stark-ladders in coupled quantum wells,” Superlattices Microstruct. 17(4), 457 (1995).
    23. L. E. Brus, “Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403 (1984).
    24. F. Fang and W. Howard, “Negative field-effect mobility on (100) Si surfaces,” Physical Review Letters 16(18), 797–799 (1966).
    25. E. Schubert, Quantum Mechanics Applied to Semiconductor Devices, pp.82, in ecse.rpiscrews.us, Rensselaer Polytechnic Institute (2004).
    26. Holger T Grahn, Numerical data and functional relationships, World Scientific, Singapore, (1999).
    27. C.T. Cheng, C.Y. Chen, C.W. Lai, W.H. Liu, S.C. Pu, P.T. Chou, Y.H. Chou, and H.T. Chiu, “Syntheses and photophysical properties of type-II CdSe/ZnTe/ZnS (core/shell/shell) quantum dots,” J. Mater. Chem. 15(33), 3409 (2005) [doi:10.1039/b503681j].
    28. H. Rodríguez, C. T. Giner, S. E. Ulloa, and J. M. Antuña, “Electronic states in a quantum lens,” Phys. Rev. B 63, 125319 (2001) [DOI:10.1103/PhysRevB.63.125319]
    29. M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure ,” Phys. Rev. B 52, 11969 (1995). [DOI: 10.1103/PhysRevB.52.11969]
    30. S. Raymond, J. P. Reynolds, and J. L. Merz, “Asymmetric Stark shift in AlxIn1-xAs/AlyGa1-yAs self-assembled dots,” Phys. Rev. B 58(20), 415–418 (1998).
    31. T. M. Hsu, W.-H. Chang, C. C. Huang, N. T. Yeh, and J.-I. Chyi, “Quantum-confined Stark shift in electroreflectance of InAs/InxGa1−xAs self-assembled quantum dots,” Appl. Phys. Lett. 78(12), 1760 (2001) [doi:10.1063/1.1355989].
    32. J. Barker and E. O’Reilly, “Theoretical analysis of electron-hole alignment in InAs-GaAs quantum dots,” Phys. Rev. B 61(20), 13840–13851 (2000).
    33. Holger T. Grahn, Introduction to Semiconductor Physics, Chapter 11, Singapore (1999).
    34. E. F. Schubert, Physical Foundations of Solid-State Devices, Chapter 10, Troy, New York (2006).
    35. D. Miller, D. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev. B 33(10), 6976–6982 (1986).
    36. D. M. Whittaker, M. S. Skolnick, G. W. Smith, and C. R. Whitehouse, “Wannier-Stark localization of Χ and Γ states in GaAs-A1As short-period superlattices,” Phys. Rev. B 42(6), 3591–3598 (1990).
    37. H. Sari, H. Metin, I. Sökmen, S. Elagöz, and Y. Ergün, “Stark localization and mixing phenomena between different Stark-ladders in coupled quantum wells,” Superlattices Microstruct. 17(4), 457 (1995).
    38. T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi, R. V. Hijman, S. Tarucha, and L. P. Kouwenhoven, “Microwave spectroscopy of a quantum-dot molecule,” Nature 395, 873–876 (1998).
    39. M. K. Chin, “Modeling of InGaAs/InAlAs coupled double quantum wells,” J. Appl. Phys. 76(1), 518 (1994) [doi:10.1063/1.357104].
    40. T. Hayashi, T. Fujisawa, H. Cheong, Y. Jeong, and Y. Hirayama, “Coherent Manipulation of Electronic States in a Double Quantum Dot,” Phys. Rev. Lett. 91(22), 226804 (2003) [doi:10.1103/PhysRevLett.91.226804].
    41. Elisabetta Collini, Cathy Y. Wong, Krystyna E. Wilk, Paul M. G. Curmi, Paul Brumer and Gregory D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644-647 (2010) [doi:10.1038 /nature08811].
    42. Kasprzak J, Patton B, Savona V and Langbein W, “Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging,” Nature Photonics 5, 57-63 (2011)[ doi:10.1038/nphoton.2010.284].
    43. C R Hall, J O Tollerud, H M Quiney and J A Davis, “C R Hall1, J O Tollerud1, H M Quiney2 and J A Davis,” New Journal of Physics 15, 045028 (2013).
    44. E. F. Schubert, Physical Foundations of Solid-State Devices, Chapter 8, Troy, New York (2006).
    45. Hari Signh Nalwa, Handbook of Thin Film Materials: Nanomaterials and magnetic thin films, p 221, Stanford Scientific Corporation, USA (2002).
    46. B. O. Seraphin and R. B. Hess, “Franz-Keldysh Effect above the Fundamental Edge in Germanium ,“ Phys. Rev. Letter 14, 138 (1965)
    47. B. O. Seraphin and N. Bottka, “Band-Structure Analysis from Electro-Reflectance Studies,” Phys. Rev.145,628, (1966)
    48. K. Fujiwara, H. Schneider, R, Cingolani and K. Ploog, “Successive Wannier-Stark localization and excitonic enhancement of intersubband absorption in a short-period GaAs/AlAs superlattice,” Solid State Comm. 72, 9 (1989).
    49. Paul Harrison, QUANTUM WELLS, WIRES AND DOTS-Theoretical and Computational Physics of Semiconductor Nanostructures, 2nd Ed. pp. 212, Wiley-Interscience, UK.
    50. Imada, S. Ozaki, and S. Adachi, “Photoreflectance spectroscopy of wurtzite CdS,” J. Appl. Phys. 92(4), 1793 (2002) [doi:10.1063/1.1493655].
    51. U. Woggon, K. Hild, F. Gindele, and W. Langbein, “Huge binding energy of localized biexcitons in CdS Õ ZnS quantum structures,” Phys. Rev. B 61(19), 632–635 (2000).
    52. R. W. Meulenberg, J. R. I. Lee, A. Wolcott, J. Z. Zhang, L. J. Terminello, and T. van Buuren, “Determination of the exciton binding energy in CdSe quantum dots.,” ACS Nano 3(2), 325–330 (2009) [doi:10.1021/nn8006916].
    53. Franceschetti and A. Zunger, “Direct Pseudopotential Calculation of Exciton Coulomb and Exchange Energies in Semiconductor Quantum Dots,” Phys. Rev. Lett. 78(5), 915–918 (1997) [doi:10.1103/PhysRevLett.78.915].
    54. H. Schmidt and H. Weller, “Quantum size effects in semiconductor crystallites: calculation of the energy spectrum for the confined exciton,” Chem. Phys. Lett. 129(6), 0–3 (1986).
    55. Y. Kayanuma, “Wannier exciton in microcrystals,” Solid State Commun. 59(6), 405–408 (1986).
    56. S. V. Gaponenko, Optical properties of semiconductor nanocrystals, Chapter 2, Cambridge University, UK, 1998.
    57. S. Monticone, R. Tufeu, A. Kanaev, E. Scolan, and C. Sanchez, “Quantum size effect in TiO2 nanoparticles: does it exist?,” Applied Surface Science 162, 565-570 (2000).
    58. L. E. Brus, “Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403 (1984) [doi:10.1063/1.447218].
    59. Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties,” J. Phys. Chem. 95(2), 525–532 (1991).
    60. T. Christian and E. Ghadiri, “QDs application in solar cells” (2009).
    61. S.V. Gaponenko, "Optical properties of semiconductor nanocrystals" Cambridge University Press, 2005.
    62. P. Paufler, Landolt-Börnstein. Numerical data and functional relationships in science and technology. New Series. Group III: Crystal and Solid State Physics. Vol. 22: Semiconductors, pp.168, Ed. by O, Madelung [DOI: 10.1002/crat.2170231029].
    63. Holger T Grahn, Numerical data and functional relationships, pp. 119, World Scientific, Singapore, (1999).
    64. http://www.semiconductors.co.uk/propiivi5410.htm
    65. http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaAs/basic.html
    66. B. Brar, G. D. Wilk and A. C. Seabaugh, “Direct extraction of the electron tunneling effective mass in ultrathin SiO2,” Appl. Phys. Lett. 69, 2728 (1996), [doi: 10.1063/1.117692].
    67. S.M. Sze, Physics of Semiconductor Devices, John Wiley and Sons, Inc, New York, (1981).
    68. S. Roberts, “Dielectric Constants and Polarizabilities of Ions in Simple Crystals and Barium Titanate,” Phys. Rev. 76, 1215 (1949).
    69. H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, and F. Levy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys. 75, 2042-2047 (1994).
    70. B. Mereu, G. Sarau, E. Pentia, V. Draghici, M. Lisca, T. Botila and L. Pintilie, "Field-effect transistor based on nanometric thin CdS films," Materials Science and Engineering: B 109(1-3), 260-263 (2004).
    71. M. Powalla and B. Dimmler, “Development of large area CIGS modules,” Solar Energy Materials & Solar Cells 75(27) (2003).
    72. H. El Maliki, J. C. Bernède, S. Marsillac, J. Pinel, X. Castel and J. Pouzet, "Study of the influence of annealing on the properties of CBD-CdS thin films," Applied Surface Science 205(1-4), 65-79 (2003) [doi:10.1016/S0169-4332(02)01082-6].
    73. H. Moualkia, S. Hariech, and M. S. Aida, “Structural and optical properties of CdS thin films grown by chemical bath deposition,” Thin Solid Films 518(4), 1259–1262, Elsevier B.V. (2009) [doi:10.1016/j.tsf.2009.04.067].
    74. C. Guillén, M. Martınez, and J. Herrero, “Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters,” Thin Solid Films 335(1-2), 37–42 (1998).
    75. Daniel Lincot and Raúl Ortega Borges, “Chemical Bath Deposition of Cadmium Sulfide Thin Films. In Situ Growth and Structural Studies by Combined Quartz Crystal Microbalance and Electrochemical Impedance Techniques,” J. Electrochem. Soc. 139 (7), 1880-1889 (1992) [doi: 10.1149/1.2069515 ].
    76. N.-H. Kim, S.-H. Ryu, H.-S. Noh, and W.-S. Lee, “Electrical and optical properties of sputter-deposited cadmium sulfide thin films optimized by annealing temperature,” Mater. Sci. Semicond. Process. 15(2), 125–130, Elsevier (2012) [doi:10.1016/j.mssp.2011.09.001].
    77. Oliva and O. Solıs-Canto, “Formation of the band gap energy on CdS thin films growth by two different techniques,” Thin Solid Films 391, 28–35 (2001).
    78. L. Ward, Handbook of Optical Constants of Solids II, edited by E. D. Palik, p. 579, Academic, Boston, USA, 1991.
    79. Imada, S. Ozaki, and S. Adachi, “Photoreflectance spectroscopy of wurtzite CdS,” J. Appl. Phys. 92(4), 1793 (2002) [doi:10.1063/1.1493655].
    80. U. Woggon, K. Hild, F. Gindele, and W. Langbein, “Huge binding energy of localized biexcitons in CdS Õ ZnS quantum structures,” Phys. Rev. B 61(19), 632–635 (2000).
    81. N.-H. Kim, S.-H. Ryu, H.-S. Noh, and W.-S. Lee, “Electrical and optical properties of sputter-deposited cadmium sulfide thin films optimized by annealing temperature,” Mater. Sci. Semicond. Process. 15(2), 125–130, Elsevier (2012) [doi:10.1016/j.mssp.2011.09.001].
    82. E. Rabani, B. Hetenyi, B. J. Berne, and L. E. Brus, “Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium,” The Journal of Chemical Physics 110, 5355 (1999) [doi: 10.1063/1.478431].
    83. The General Properties of Si, Ge, SiGe, SiO2 and Si3N4
    84. N.-H. Kim, S.-H. Ryu, H.-S. Noh, and W.-S. Lee, “Electrical and optical properties of sputter-deposited cadmium sulfide thin films optimized by annealing temperature,” Mater. Sci. Semicond. Process. 15(2), 125–130, Elsevier (2012) [doi:10.1016/j.mssp.2011.09.001].
    85. C. Liu, Y. Kwon, and J. Heo, “Laser-induced blue-shift of the photoluminescence from PbS quantum dots in glasses,” Chem. Phys. Lett. 452, 281–284 (2008).
    86. C. Cheng and H. Yan, “Bandgap of the core–shell CdSe/ZnS nanocrystal within the temperature range 300–373K,” Phys. E 41(5), 828–832 (2009).
    87. F. Jarjour, R. a. Oliver, A. Tahraoui, M. J. Kappers, R. a. Taylor, and C. J. Humphreys, “Experimental and theoretical study of the quantum-confined Stark effect in a single InGaN/GaN quantum dot under applied vertical electric field,” Superlattices Microstruct. 43(5-6), 431–435 (2008) [doi:10.1016/j.spmi.2007.06.021].
    88. T. M. Hsu, W.-H. Chang, C. C. Huang, N. T. Yeh, and J. I. Chyi, “Quantum-confined Stark shift in electroreflectance of InAs/InxGa1−xAs self-assembled quantum dots,” Appl. Phys. Lett. 78(12), 1760 (2001) [doi:10.1063/1.1355989].
    89. S. Raymond, J. P. Reynolds, and J. L. Merz, “Asymmetric Stark shift in AlxIn1-xAs/AlyGa1-yAs self-assembled dots,” Phys. Rev. B 58(20), 415–418 (1998).
    90. T. Chen, Y. Wang, P. Xiang, R. Luo, M. Liu, W. Yang, Y. Ren, Z. He, Y. Yang, et al., “Crack-free InGaN multiple quantum wells light-emitting diodes structures transferred from Si (111) substrate onto electroplating copper submount with embedded electrodes,” Appl. Phys. Lett. 100(24), 241112 (2012) [doi:10.1063/1.4729414].
    91. H. Zhao, G. Liu, J. Zhang, and J. Poplawsky, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4), A991–A1007 (2011).
    92. D. E. Aspnes, P. Handler, and R. Island, “Interband Dielectric Properties of Solids in an Electric Field,” Phys. Rev. 166(3) (1968).
    93. D. Miller, D. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev. B 33(10), 6976–6982 (1986).
    94. B. O. Dabbousi, F. V Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “( CdSe ) ZnS Core - Shell Quantum Dots : Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 9463(97), 9463–9475 (1997).
    95. O. Orlova, Y. A Gromova, V. G. Maslov, O. V Andreeva, A V Baranov, A V Fedorov, a V Prudnikau, M. V Artemyev, and K. Berwick, “Reversible photoluminescence quenching of CdSe/ZnS quantum dots embedded in porous glass by ammonia vapor.,” Nanotechnology 24(33), 335701 (2013) [doi:10.1088/0957-4484/24/33/335701].
    96. R. W. Meulenberg, J. R. I. Lee, A. Wolcott, J. Z. Zhang, L. J. Terminello, and T. van Buuren, “Determination of the exciton binding energy in CdSe quantum dots.,” ACS Nano 3(2), 325–330 (2009) [doi:10.1021/nn8006916].
    97. K. Liu, T. a. Schmedake, K. Daneshvar, and R. Tsu, “Interaction of CdSe/ZnS quantum dots: Among themselves and with matrices,” Microelectronics J. 38(6-7), 700–705 (2007) [doi:10.1016/j.mejo.2007.05.007].
    98. S. A. Empedocles; and M. G. Bawendi, “Quantum-Confined Stark Effect in Single CdSe Nanocrystallite Quantum Dots,” Science 278(19), 2114–2117 (1997) [doi:10.1126/science.278.5346.2114].
    99. Franceschetti and A. Zunger, “Direct Pseudopotential Calculation of Exciton Coulomb and Exchange Energies in Semiconductor Quantum Dots,” Phys. Rev. Lett. 78(5), 915–918 (1997) [doi:10.1103/PhysRevLett.78.915].
    100. A. F. Jarjour, R. a. Oliver, A. Tahraoui, M. J. Kappers, R. a. Taylor, and C. J. Humphreys, “Experimental and theoretical study of the quantum-confined Stark effect in a single InGaN/GaN quantum dot under applied vertical electric field,” Superlattices Microstruct. 43(5-6), 431–435 (2008) [doi:10.1016/j.spmi.2007.06.021].
    101. E. F. Schubert, Physical Foundations of Solid-State Devices, Chapter 10, Troy, New York (2006).
    102. Holger T Grahn, Numerical data and functional relationships, pp. 149, World Scientific, Singapore, (1999).
    103. H. Sari, H. Metin, I. Sökmen, S. Elagöz, and Y. Ergün, “Stark localization and mixing phenomena between different Stark-ladders in coupled quantum wells,” Superlattices Microstruct. 17(4), 457 (1995).
    104. J. L. Bradshaw, R. P. Devaty, W. J. Choyke, and R. L. Messham, “Fabry-Perot cavity oscillations of an AlxGa1-xAs photoluminescence spectrum,” Appl. Opt. 29(16), 2367–2369 (1990).
    105. T. Lee, W. Kang, Y. Park, and E. Kim, “Fabry-perot interference characteristics of the photoluminescence in nanoclustered SiNx: H thick films,” J. Korean Phys. … 50(3), 581–585 (2007).
    106. H. A. Macleod, Thin-Film Optical Filters, p. 800, CRC Press; 4th edtion (2010).
    107. Macleod, “Gain in Optical Coatings: Part 1 ”, Bulletin, Society of Vacuum Coaters, Issue Fall, (2011)
    108. Stenzel, Olaf, “Derivations from the Oscillator Model,” in The Physics of Thin Film Optical Spectra, pp. 42-44,.1996.

    QR CODE
    :::