跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝岱豈
Dia-qi Xie
論文名稱: 柱狀微結構對液珠熱毛細運動之影響
Effects of microstructures on thermocapillary droplet actuation
指導教授: 洪銘聰
Ming-tsung Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 119
中文關鍵詞: 熱毛細力溫度梯度表面微結構
外文關鍵詞: thermocapillary force, temperature gradient, microstructure
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來微流體技術的快速發展,微流體晶片可對微量流體進行複雜、精確的操作,其具有體積輕巧、使用樣品、試劑量少等優點,因此在生物技術研究上的應用範圍非常廣泛。常見的微流體驅動原理大約可分類為熱毛細力、表面粗糙度梯度、表面化學梯度、靜電力及電濕潤等,和其他方法相較,使用熱毛細力驅動液珠有試片製程簡單、控制容易等優點。由於熱毛細力無法在小範圍內提供極大的液珠驅動力,所以液珠的移動速度並不快,為此在試片上加入柱狀微結構改變液珠在矽晶片上的潤濕性,以期達到增加液珠遷移速度的效果。
    本論文主要以乾蝕刻在矽表面上製作不同間距的柱狀微結構,並在具有微結構的矽表面上,以熱毛細力驅動液珠,探討微結構對液珠移動的影響。在光滑的矽表面上,發現液珠移動時會產生形變,造成前進角比後退角大,且受溫度梯度越大的液珠移動速度越快;在有微結構的矽表面上,因為微結構造成液珠在固體表面呈現親水性,使熱毛細力變大,所以液珠的位移、速度都比在無結構的表面上快,但由於受到微結構的阻礙,液珠移動時速度不斷下降。最後用牛頓運動定律估算微結構造成的阻力,從固定表面粗糙係數的觀點分析,發現受溫度梯度越大的液珠移動速度越快,受阻力越大; 從固定溫度梯度的觀點分析,發現在表面粗糙係數越小的試片上,因試片與液珠接觸的固體面積較少,黏滯摩擦力也較小,液珠的移動速度越快,但受阻力也越大。


    In recent years, microfluidics technology has been developed rapidly. Microfluidic can be operated complexly and exactly by microfluidic chips. It has many advantages such as lightweight, less reagent, etc. Therefore, the scope of application in biotechnology research is very extensive. Common microfluidic driving principle can be roughly classified into thermocapillary forces, surface roughness gradient, surface chemistry gradient, static electricity and electro-wetting etc. Compared with other methods, using thermocapillary force to drive liquid drop has some advantages like manufacturing process is simple, easy to control and so on. Because thermocapillary force can’t provide great driving force within a small range, the drop moving speed is not fast. To this end, we added column microstructure into silicon wafer to change wettability between squalane droplet and silicon chip, expect to increase the droplet migration speed.
    This paper, mainly make column microstructure with different spacing on the silicon surface by dry etching, and drive liquid droplet by thermocapillary force on it to investigate the effect of microstructure on the droplet migration. On the smooth silicon surface, droplet will deform when moving. Resulting advancing contact angle is larger than receding contact angle, and the greater the temperature gradient, the droplet moving faster. Because of the microstructure, droplet exhibits hydrophilic on roughness solid surface. Thermocapillary force becomes larger, so the displacement and velocity of droplet is faster than it on smooth surface. But hampered by the microstructure, the moving speed of the droplet is declining. Finally, using Newton's laws of motion to estimate the resistance caused by micro structure. From a point of the fixed surface roughness coefficient, find that the greater temperature gradient, the faster droplet moves and the greater the resistance. From the view of fixing temperature gradient, find that the smaller the surface roughness coefficient, because the contact area between liquid droplet and solid is fewer, the faster droplet moves, but the greater the resistance.

    摘要 i 目錄 iv 圖目錄 vii 表目錄 xi 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 2 1-3 文獻回顧 3 1-3-1 由熱毛細現象驅動液珠 3 1-3-2 靜電力(electrostatic) 11 1-3-3 電濕潤(electro-wetting) 13 1-3-4 表面粗糙度 16 1-3-5 重力 17 1-3-6 文獻綜合比較 18 1-4 論文架構 19 第二章 理論基礎 21 2-1 潤濕理論 21 2-1-1 楊氏方程式(Young’s equation ) 21 2-1-2 溫佐方程式(Wenzel Model) 22 2-1-3 卡西方程式(Cassie and Baxter Model) 23 2-1-4 卡西修正模型 24 2-2 遲滯效應 25 2-2-1 動態接觸角(dynamic contact angle) 25 2-2-2 接觸角遲滯(contact angle hysteresis) 26 2-3 表面改質技術 27 2-4 表面張力 28 2-5 熱毛細現象 29 2-6 毛細現象 29 2-7 黏滯力 31 第三章 研究方法 33 3-1 研究流程架構 33 3-2 試片準備 34 3-2-1 無結構試片製程 34 3-2-2 微結構尺寸設計 34 3-2-3 表面微結構製程步驟 35 3-3 量測與分析方法 37 3-4 試片上溫度梯度測試 38 3-4-1 T-type熱電偶量測結果 38 3-4-2 紅外線測溫器量測結果 39 第四章 結果與討論 40 4-1 液體性質參數 40 4-2 液珠在溫度梯度表面移動實驗結果 42 4-2-1 速度-時間關係 44 4-2-2 位移-時間關係 46 4-2-3 速度-位移關係 47 4-2-4 接觸角-時間關係 49 4-2-5 接觸角-速度關係 51 4-3 毛細回流阻力分析 52 4-4 液珠在具溫度梯度表面移動實驗結論 55 4-5 實驗方法修正 56 4-6 液珠在具微結構溫度梯度表面移動實驗結果 63 4-6-1 相同表面粗糙係數下液珠移動結果分析 71 4-6-2 相同溫度梯度下液珠移動結果分析 80 4-7 微結構阻力分析 89 4-7-1 相同表面粗糙係數下液珠移動所受阻力分析 89 4-7-2 相同溫度梯度下液珠移動所受阻力分析 98 4-8 液珠在具微結構溫度梯度表面移動實驗小結 113 第五章 結論與未來展望 114 參考文獻 116

    [1] 越吟有限公司電子月刊2012年1月號-微型液珠操控平台系統。
    [2] W. Adamson, “Physical Chemistry of Surfaces”, A Wiley-Interscience Publication, New York , 1983.
    [3] 曾元泰,溫度梯度引發之微液珠致動器設計與研製,碩士論文,國立清華大學工程與動力系統科學系,新竹,台灣,2003。
    [4] Jia-Hui Chen, Jing-Tang Yang, Ker-Jer Huang, Chih-Sheng Yu and Joseph Yih-Chiuen Hu, “Droplet Manipulation Over a Hydrophobic Surface With Roughness Patterns”, ASME 2004 Heat Transfer/Fluids Engineering Summer Conference Charlotte, North Carolina, USA, July 11–15, 2004 .
    [6] J. B. Brzoska , F. Brochard-Wyart,’ and F. Rondelez, “Motions of Droplets on Hydrophobic Model Surfaces Induced by Thermal Gradients”, Langmuir ,1994.
    [7] D.E.kataoka.et al., “Patterning liquid flow on the microscopic scale”, Nature, Vol. 402, pp.794-797,1999.
    [8] Susan Daniel, Manoj K. “Fast drop movements resulting from the phase change on a gradient surface”, Science, Vol.291, pp.633-636, 2001.
    [9] Darsh T. Wasan, et. al., “Droplets Speeding on Surfaces”, Science, Vol 291, pp. 605-606, 2001.
    [10] Yuejun Zhao, Fangjie Liu, and Chuan-Hua Chen,”Thermocapillary actuation of binary drops on solid surfaces”, APPLIED PHYSICS LETTERS 99, 104101, 2011
    [11] Jian Z. Chen, Sandra M. Troian, Anton A. Darhuber, and Sigurd Wagner,” Effect of contact angle hysteresis on thermocapillary droplet actuation”, Journal of Applied Physics 97, 014906 , 2005.
    [12] V. Pratap, N. Moumen, and R. S. Subramanian, “Thermocapillary Motion of a Liquid drop on a Horizontal Solid Surface”, Langmuir, Vol.24, pp.5185-5193, 2008.
    [13] R. Mosera, T. Higuchib,”Precise positioning using electrostatic glass motor”, Volume 26, Issue 2,, Pages 162–167 ,April 1997.
    [14] Masao Washizu,” Electrostatic Actuation of Liquid Droplets for Microreactor Applications”,IEEE Transactions On Industry Applications, VOL. 34, NO. 4, July/August 1998.
    [15] A.Torkkeli,“Electrostatic transportation of water droplets on superhydrophobic surface”, IEEE 14th Int. Conf. MEMS (MEMS 01’), Interlaken, Switzerland, pp.475-478, Jan. 2001.
    [16] Orlin D. Velev, Brian G. Prevo & Ketan H. Bhatt, “On-chip manipulation of free droplets”, Nature 426, 515-516 , 4 December 2003.
    [17] Wim J. J. Welters * and Lambertus G. J. Fokkink, “fast electrically switchable capillary effec”, Langmuir, pp 1535–1538, 1998.
    [18] Shih-Kang Fan ; Hyejin Moon ; Chang-Jin Kim, “Towards digital microfluidic circuits: creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation”, IEEE , pp 32 – 35, 24-24 Jan. 2002.
    [19] Bo He, Junghoon Lee,”Dynamic wettability switching by surface roughness effect”, IEEE , pp.120 – 123, 19-23 Jan. 2003.
    [20] W. Barthlott, C. Neinhuis,”purity of the sacred lotus or escape from contamination in biological surfaces”, Volume 202, Issue 1, pp 1-8, April 1997.
    [21] Thomas Young,”An essay on the cohesion of fluids”, Philosophical Transactions of the Royal Society of London Vol. 95, pp. 65-87,1805.
    [22] Robert N. Wenzel,“Resistance of solid surfaces to wetting by water”, Ind. Eng. Chem. , pp 988–994 , 1936.
    [23] A. B. D. Cassie and S. Baxter,“Wettability of porous surfaces”, Trans. Faraday Soc., 546-551, 1944.
    [24] A.J.B. Milne, A. Amirfazli,”The Cassie equation: How it is meant to be used”, Advances in Colloid and Interface Science 170 , 2012.
    [25] Lichao Gao and Thomas J. McCarthy,“Contact ,“Angle Hysteresis Explained”, Langmuir, 22, 6234-6237, 2006.
    [26] Mark E. McGovern, Krishna M. R. Kallury, Michael Thompson, “Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane”,Langmuir, 10 (10), pp 3607–3614, 1994.
    [27] 林振德,表面微結構對靜態接觸角與表面附著現象影響之研究,碩士論文,交通大學機械工程系,新竹,台灣,2004。
    [28] Thomas McMahon (Author), John Tyler Bonner (Author), “On Size and Life”, Scientific American Books - W. H. Freeman & Co,1984.
    [29] Chen Xue,Zhu Zhiqiang, Liu Qiusheng, Sun Yingnan, Yu Yude, “Experimental Study OF Thermocapillary Motion Of a Droplet On A Solid Surface”, Institute of Mechanics,Chinese Academy of Sciences, Beijing 100190,China, 2013.
    [30] Horng-Jou Wang, Hsin-Chang Tsai, Hwang-Kuen Chen and Tai-Kang Shing*,Capillarity of Rectangular Micro Grooves and Their Application to Heat Pipes, Taoyuan, Taiwan 333, R.O.C. ,2005.
    [31] M. de Ruijter, P. Kölsch, M. Voué, J. De Coninck, and J. P. Rabe,
    Colloids Surf. ‘The experimental data for squalene in this reference was used to generate an expression for the variation in viscosity’ , A 144, 238 ,1998.
    [32] 阮揮碧,液滴於具溫度梯度的水平固體表面上遷移行為之數值研究,博士論文,國立中央大學機械工程系,桃園,台灣,2010。
    [33] C. W. Extrand ,” Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces”, Advances in Colloid and Interface Science 170 (2012) 48–55, Langmuir, 18 (21), pp 7991–7999, 2002.
    [34] Wenjiang Shen, JoonWon Kim , ”Controlling Adhesion Force by Means of Nanoscale Surface Roughness”, Langmuir, pp 9972–9978, 2011.

    QR CODE
    :::