| 研究生: |
陳順佳 Shun-Jia Chen |
|---|---|
| 論文名稱: |
探討酵母菌GlyRS基因的表現及功能 Study of the expression and function of yeast GlyRS genes |
| 指導教授: |
王健家
Chien-Chia Wang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 122 |
| 外文關鍵詞: | aminoacyl-tRNA synthetase, inducible gene, sequence context, aminoacylation |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
之前的研究發現釀酒酵母中ALA1及GRS1基因都是使用non-AUG起始密碼轉譯出各自的粒線體型蛋白質。我們實驗室研究發現non-AUG轉譯起始效率大約是AUG的三分之一或更少,而且周邊序列對non-AUG的轉譯效率影響也較對AUG大,除此之外,也發現最好的周邊序列是AAA (-3到-1核甘酸)。重複的non-AUG起始密碼(如ACGACG)通常能增加轉譯的效率;但某些重複的non-AUG起始密碼(如GUGGUG)會使周邊序列變差(尤其是-3核甘酸),則其轉譯效率反而變差。另一個重大發現是:絕大部分酵母菌都只含有一個glycyl-tRNA synthetase (GlyRS)基因(稱做GRS1),但是S. cerevisiae及V. polyspora卻有兩個相異的GlyRS基因(稱做GRS1及GRS2)。研究結果顯示:所有的酵母菌GRS1基因都是雙功能的,能同時做出細胞質及粒線體的GlyRS異構型,但是GRS2基因卻是非必需的。然而最令人驚奇的是:GRS2基因雖然在正常培養條件下不表現,它卻可以被一些逆境條件誘導表現,例如鹼性培養基(pH 8.0)或高溫生長條件(37°C),且純化出來的GlyRS2蛋白質具有相當程度的胺醯化活性。在正常(30°C)及高溫條件下(37°C) GlyRS1與GlyRS2的穩定度都相當高,且在特定高溫條件下GRS2可以互補GRS1的剔除株,維持其正常生長。也許被誘導出來的GlyRS2在某些條件下可以取代GlyRS1的功能,另一種可能性則是GlyRS2參與其它代謝機制。
Previous studies showed that ALA1 and GRS1 of Saccharomyces cerevisiae can initiate translation of their respective mitochondrial forms from a non-AUG codon. Our results showed that the translation efficiency of non-AUG initiation is about 30% (or less) relative to that of AUG initiation. In addition, it appeared that a non-AUG initiator codon is much more sensitive to its sequence context than is an AUG initiator codon, and AAA (the nucleotides at position -3 to -1 relative to the initiator) is the most favorable sequence context. Moreover, redundancy of non-AUG initiators, for instance ACGACG, significantly increased the translational efficiency. However, some redundant non-AUG initiators such as UUGUUG that have a poor sequence context (especially at position -3 relative to the second UUG codon), reduced the efficiency of translation. Another interesting discovery reported here was that the majority of yeast species possess a single glycyl-tRNA synthetase (GlyRS) gene (named GRS1). In contrast, S. cerevisiae and Vanderwaltozyma polyspora possessed two GlyRS genes (named GRS1 and GRS2). In all cases, GRS1 was dual-functional, because it encodes both cytoplasmic and mitochondrial forms of GlyRS. In contrast, GRS2 was pseudogene-like and dispensable for growth. Surprisingly, while GRS2 was silent under normal growth conditions (30°C), its expression was induced by certain stresses such as high temperature (37°C) and high external pH (pH 8.0). In addition, purified recombinant GlyRS2 retained a substantial level of aminoacylation activity. Both GlyRS1 and GlyRS2 were appreciably stable in vivo. When overexpressed, the GRS2 gene could rescue the growth defect of a GRS1 knockout strain. Altogether, these data suggest that GRS2 may function to substitute for GRS1 under certain circumstances. Alternatively, it may be involved in other as-yet-unidentified metabolic pathways.
Reference
1. Carter, C. W. Jr. (1993) Annu. Rev. Biochem. 62, 715-748
2. Martinis, S. A., and Schimmel, P. (1996) in Escherichia coli and Salmonella Cellular and Molecular Biology, ed. Neidhardt, F. C. (Am. Soc. Microbiol., Washington, DC), 2nd Ed., pp. 887-901
3. Giegé, R., Sissler, M., and Florentz, C. (1998) Nucleic Acids Res. 26, 5017-5035
4. Pelchat, M., and Lapointe, J. (1999) Biochem. Cell. Biol. 77, 343-347
5. Chatton, B., Walter, P., Ebel, J.-P., Lacroute, F., and Fasiolo, F. (1988) J. Biol. Chem. 263, 52-57
6. Natsoulis, G., Hilger, F., and Fink, G. R. (1986) Cell 46, 235-243
7. Turner, R. J., Lovato, M., and Schimmel, P. (2000) J. Biol. Chem. 275, 27681-27688
8. Sherman, F., Stewart, J. W., and Schweingruber, A. M. (1980) Cell 20, 215-222
9. Kozak, M. (1989) Mol. Cell. Biol. 9, 5073-5080
10. Kozak, M. (1991) J. Biol. Chem. 266, 19867-19870
11. Pisarev, A. V., Kolupaeva, V. G., Pisareva, V. P., Merrick, W. C., Hellen, C. U.T., and Pestova, T. V. (2006) Genes Dev. 20, 624-636
12. Cigan, A. M., and Donahue, T. F. (1987) Gene 59, 1-18
13. Baim, S. B., and Sherman, F. (1988) Mol. Cell. Biol. 8, 1591-1601
14. Cigan, A. M., Pabich, E. K., and Donahue, T. F. (1988) Mol. Cell. Biol. 8, 2964-2975
15. Zitomer, R. S., Walthall, D. A., Rymond, B. C., and Hollenberg, C. P. (1984) Mol. Cell. Biol. 4, 1191-1197
16. Clements, J. M., Laz, T. M., and Sherman, F. (1988) Mol. Cell. Biol. 8, 4533-4536
17. Chang, K. J., and Wang, C. C. (2004) J. Biol. Chem. 279, 13778-13785
18. Tang, H. L., Yeh, L. S., Chen, N. K., Ripmaster, T., Schimmel, P., and Wang, C. C. (2004) J. Biol. Chem. 279, 49656-49663
19. Abramczyk, D., Tchorzewski, M., and Grankowski, N. (2003) Yeast 20, 1045-1052
20. Gazeau, M., Delort, F., Fromant, M., Dessen, P., Blanquet, S., and Plateau, P. (1992) J. Mol. Biol. 241, 378-389
21. Leveque, F., Gazeau, M., Fromant, M., Blanquet, S., and Plateau, P. (1991) J. Bacteriol. 173, 7903-7910
22. Bochner, B. R., Lee, P. C., Wilson, S. W., Cutler, C. W., and Ames, B. N. (1984) Cell 37, 225-232
23. Bochner, B. R., Zylicz, M., and Georgopoulos, C. (1986) J. Bacteriol. 168, 931-935
24. Fuge, E. K., and Farr, S. B. (1993) J. Bacteriol. 175, 2321-2326
25. Brevet, A., Chen, J., Leveque, F., Plateau, P., and Blanquet, S. (1989) Proc. Natl. Acad. Sci. USA 89, 8275-8279
26. Theoclitou, M. -E., E-Thaher, T. S. H., and Miller, A. D. (1994) J. Chem. Soc. Chem. Commun. 5, 659-661
27. Dietrich, A., Weil, J. H., and Maréchal-Drouard, L (1992) Annu. Rev. Cell. Biol. 8, 115-131
28. Wang, C. C., Chang, K. J., Tang, H. L., Hsieh, C. J., and Schimmel, P. (2003) Biochemistry 42, 1646-1651
29. Souciet, G., Menand, B., Ovesna, J., Cosset, A., Dietrich, A., and Wintz, H. (1999) Eur. J. Biochem. 266, 848-854
30. Huang, H. Y., Kuei, Y., Chao, H. Y., Chen, S. J., Yeh, L. S., and Wang, C. C. (2006) J. Biol. Chem. 281, 31430-31439
31. Unbehaun, A., Borukhov, S. I., Hellen, C. U., and Pestova, T. V. (2004) Genes Dev. 18, 3078-3093
32. Cheung, Y. N., Maag, D., Mitchell, S. F., Fekete, C. A., Algire, M. A., Takacs, J. E., Shirokikh, N., Pestova, T., Lorsch, J. R., and Hinnebusch, A. G. (2007) Genes Dev. 21, 1217-1230
33. Kozak, M. (1990) Proc. Natl. Acad. Sci. USA 87, 8301-8305
34. Chang, K. J., Lin, G., Men, L. C., and Wang, C. C. (2006) J. Biol. Chem. 281, 7775-7783
35. Sikorski, R. S., and Hieter, P. (1989) Genetics, 122, 19-27
36. Bennetzen, J. L., and Hall, B. D. (1982) J. Biol. Chem. 257, 3018-3025
37. Kozak, M. (1999) Gene 234, 187-208
38. Huang, H. Y., Tang, H. L., Chao, H. Y., Yeh, L. S., and Wang, C. C. (2006) Mol. Microbiol. 60, 189-198
39. Slusher, L. B., Gillman, E. C., Martin, N. C., and Hopper, A. K. (1991) Proc. Natl. Acad. Sci. USA 88, 9789-9793
40. Wolfe, C. L., Lou, Y. C., Hopper, A. K., and Martin, N. C. (1994) J. Biol. Chem. 269, 13361-13366
41. Acland, P., Dixon, M., Peters, G., and Dickson, C. (1990) Nature 343, 662-665
42. Saris, C. J., Domen, J., and Berns, A. (1991) EMBO J. 10, 655-664
43. Hann, S. R., Sloan-Brown, K., and Spotts, G. D. (1992) Genes Dev. 6, 1229-1240
44. Packham, G., Brimmell, M., and Cleveland, J. L. (1997) Biochem. J. 328, 807-813
45. Riechmann, I. L., Ito, T., and Meyerowitz, E. M. (1999) Mol. Cell Biol. 19, 8505-8512
46. Sadler, R., Wu, L., Forghani, B., Renne, R., Zhong, W., Herndier, B., and Ganem, D. (1999) J. Viol. 73, 5722-5730
47. Yoon, H., and Donahue, T, F. (1992) Mol. Microbiol. 6, 1413-1419
48. Huang, S., Elliott, R. C., Liu, P. S., Koduri, R. K., Weickmann, J. L., Lee, J. H., Blair, L. C., Ghosh-Dastidar, P., Bradshaw, R. A., Bryan, K. M., Einarson, B., Kendall, R. L., Kolacz, K. H., and Saito, K. (1987) Biochemistry 26, 8242-8246
49. Polevoda, B., Norbeck, J., Takakura, H., Blomberg, A., and Sherman, F. (1999) EMBO J. 21, 6155-6168
50. Chen, S. J., Lin, G., Chang, K. J., Yeh, L. S., and Wang, C. C. (2008) J. Biol. Chem. 283, 3173-3180
51. Chen, S., Vetro, J. A., and Chang, Y. H. (2002) Arch. Biochem. Biophys. 398, 87-93
52. Varshavsky, A. (1996) Proc. Natl. Acad. Sci. USA 93, 12142-12149
53. Eriani, G., Delarue, M., Poch, O., Gangloff, J., and Moras, D. (1990) Nature 347, 203-206
54. Schimmel, P. (1987) Annu. Rev. Biochem. 56, 125-158
55. Ibba, M., Morgan, S., Curnow, A. W., Pridmore, D. R., Vothknecht, U. C., Gardner, W., Lin, W., Woese, C. R., and Söll, D. (1997) Science 278, 1119-1122
56. Ostrem, D. L., and Berg, P. (1970) Proc. Natl. Acad. Sci. USA 67, 1967-1974
57. Shiba, K., Schimmel, P., Motegi, H., and Noda, T. (1994) J. Biol. Chem. 269, 30049-30055
58. Nada, S., Chang, P. K., and Dignam, J. D. (1993) J. Biol. Chem. 268, 7660-7667
59. Kohli, J., Kwong, T., Altruda, F., Soll, D., and Wahl, G. (1979) J. Biol. Chem. 254, 1546-1551
60. Chen, S. J., Ko, C. Y., Yen, C. W., and Wang, C. C. (2009) J. Biol. Chem. 284, 818-827
61. Fersht, A. R., Ashford, J. S., Bruton, C. J., Jakes, R., Koch, G. L., and Hartley, B. S. (1975) Biochemistry 14, 1-4
62. Saitou, N., and Nei, M. (1987) Mol. Biol. Evol. 4, 406-425
63. Mirande, M. (1991) Prog. Nucleic Acid Res. Mol. Biol. 40, 95-142
64. Wang, C. C., and Schimmel, P. (1999) J. Biol. Chem. 274, 16508-16512
65. Wang, C. C., Morales, A. J., and Schimmel, P. (2000) J. Biol. Chem. 275, 17180-17186
66. Chang, C. P., Lin, G., Chen, S. J., Chiu, W. C., Chen, W. H., and Wang, C. C. (2008) J. Biol. Chem. 283, 30699-30706
67. Kaminska, M., Deniziak, M., Kerjan, P., Barciszewski, J., and Mirande, M. (2000) EMBO J. 19, 6908-6917
68. Kaminska, M., Shalak, V., and Mirande, M. (2001) Biochemistry 40, 14309-14316
69. Francin, M., Kaminska, M., Kerjan, P., and Mirande, M. (2002) J. Biol. Chem. 277, 1762-1769
70. Francin, M., and Mirande, M. (2006) Biochemistry 45, 10153-10160
71. Simos, G., Segref, A., Fasiolo, F., Hellmuth, K., Shevchenko, A., Mann, M., and Hurt, E. C. (1996) EMBO J. 15, 5437-5448
72. Godinic, V., Mocibob, M., Rocak, S., Ibba, M., and Weygand-Durasevic, I. (2007) FEBS. J. 274, 2788-2799
73. Clark, R. L., and Neidhardt, F. C. (1990) J. Bacteriol. 172, 3237-3243
74. Kawakami, K., Ito, K., and Nakamura, Y. (1992) Mol. Microbiol. 6, 1739-1745
75. Guo, R. T., Chong, Y. E., Guo, M., and Yang, X. L. (2009) J. Biol. Chem. 284, 28968-28976
76. Varshavsky, A. (1983) Cell 34, 711-712
77. Maréchal-Drouard, L., Small, I., Weil, J. H., and Dietrich, A. (1995) Meth. Enzymol. 260, 310-327
78. Duchene, A. M., Peters, N., Dietrich, A., Cosset, A., Small, I., and Wintz, H. (2001) J. Biol. Chem. 276, 15275-15283
79. Mazauric, M. H., Reinbolt, J., Lorber, B., Ebel, C., Keith, G., Giegé, R., and Kern, D. (1996) Eur. J. Biochem. 241, 814-826
80. Logan, D. T., Mazauric, M. H., Kern, D., and Moras, D. (1995) EMBO J. 14, 4156-4167
81. Chiu, W. C., Chang, C. P., Wen, W. L., Wang, S. W., and Wang, C. C. (2010) Mol. Biol. Evol. 27, 1415-1424
82. Chiu, W. C., Chang, C. P., and Wang, C. C. (2009) J. Biol. Chem. 284, 23954-23960
83. Brown, J. R., and Doolittle, W. F. (1997) Microbiol. Mol. Biol. Rev. 61, 456-502
84. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Nucleic Acids Res. 22, 4673-4680