跳到主要內容

簡易檢索 / 詳目顯示

研究生: 戴寧
Ning Dai
論文名稱: 基於WiFi-6 OFDM 系統波束成型接收 機之SDR 實現
SDR Realization of WiFi-6 Based OFDM Beamforming Receiver
指導教授: 張大中
Dah-Chung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 89
中文關鍵詞: 正交分頻多工波束成型
外文關鍵詞: OFDM, Beamforming
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正交分頻多工調變(Orthogonal Frequency Division Multiplexing, OFDM) 技術隨著無線通訊傳輸發展,也應用的非常廣泛。
    本篇論文參考IEEE 802.11ax 標準,設計一套1X8 的OFDM 傳輸 系統,應用在工研院自主研發之軟體定義無線電(Software Defined Radio, SDR) 平台M3FORCE E1000 上的收發機架構來模擬Wifi6 傳 輸。利用前導訓練序列(Preamble) 解決在高效率傳輸系統下,接收 端時序同步、載波頻率飄移的問題,並且結合了歸一化最小均方 (Normalized least mean squares, NLMS) 的波束成形(Beamforming) 技術強化訊號,解決多路徑通道干擾的問題。從結果上來看,相 比於一傳一收的系統,使用八根天線接收並且結合波束成形技術會有更好的效能。


    With the development of modern wireless communication technologies, the Orthogonal Frequency Division Multiplexing (OFDM) technology is widely used. This thesis refers to the IEEE 802.11ax standard and designs a 1X8 OFDM transmission system, which is applied to a transceiver architecture designed on the Software Defined Radio (SDR) platform M3FORCE E1000, independently developed by ITRI, to implement the WiFi-6 transmission. The preamble training sequence is used to solve the problems of timing synchronization and carrier frequency offset at the receiver in a high-efficiency transmission system, and the normalized least mean square beamforming technology is combined to strengthen the signal and solve the problem of inter channel interferences.From the simulation and realization results, compared with the T1R1 system, we implement up to eight RX antennas for digital beamforming to evaluate the system performance.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 致謝詞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 第1 章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 章節架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 第2 章正交分頻多工調變系統與WiFi-6 介紹. . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 OFDM 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 OFDM 原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 802.11ax 標準. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 M3FORCE 軟體定義無線電平台E1000 . . . . . . . . . . . . . . . . . . 15 第3 章智慧天線. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 均勻線性陣列天線. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 波束成型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 beamformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 NLMS 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 第4 章系統設計與模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1 OFDM 發射訊號. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Preamble 架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 接收機的同步問題及演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3.1 時序同步. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.2 訊框偵測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4 載波同步. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.5 通道估計及等化器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.5.1 LS 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.5.2 前導序列的時域通道估計. . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.6 殘餘頻率飄移追蹤. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 第5 章解調結果分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.1 模擬狀況下解調結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2 場景一: SDR 連接SMA 線束傳輸場景自傳自收的解調結果. 58 5.3 場景二: SDR 無線傳輸場景自傳自收的解調結果. . . . . . . . . . 63 5.4 場景三: 設置一台SDR 做傳送兩台同步SDR 為接收的解調 結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 第6 章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    [1] P. Serrano, P. Salvador, V. Mancuso, and Y. Grunenberger, “Experimenting with commodity 802.11 hardware: Overview and future directions,” IEEE Communications Surveys Tutorials, vol. 17, no. 2, pp. 671–699, 2015.
    [2] E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, “A tutorial on ieee 802.11ax high efficiency wlans,” IEEE Communications Surveys Tutorials, vol. 21, no. 1, pp. 197–216, 2019.
    [3] “Ieee standard for information technology–telecommunications and information exchange between systems local and metropolitan area networks–specific requirements part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications amendment 1: Enhancements for high-efficiency wlan,” IEEE Std 802.11ax-2021 (Amendment to IEEE Std 802.11-2020), pp. 1– 767, 2021.
    [4] A. R. Khedkar and P. Admane, “Estimation and reduction of cfo in ofdm system,” in 2015 International Conference on Information Processing (ICIP), 2015, pp. 130–134.
    [5] A. Almradi and K. A. Hamdi, “Spectral efficiency of ofdm systems with random residual cfo,” IEEE Transactions on Communications, vol. 63, no. 7, pp. 2580–2590, 2015.
    [6] A. Faza, S. Grant, and J. Benesty, “Adaptive regularization in frequency-domain nlms filters,” in 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012, pp.
    2625–2628.
    [7] R. Kawitkar, “Performance of different types of array structures based on multiple signal classification (music) algorithm,” in 2009 Fifth International Conference on MEMS NANO, and Smart Systems, 2009, pp. 159–161.
    [8] F. Sun and E. de Carvalho, “A leakage-based mmse beamforming design for a mimo interference channel,” IEEE Signal Processing Letters, vol. 19, no. 6, pp. 368–371, 2012.
    [9] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.
    [10] M. Sharma and K. K. Sarma, “Ga-aided mvdr beamforming in wide band miso wireless channel,” in 2014 International Conference on Signal Processing and Integrated Networks (SPIN), 2014, pp. 775– 779.
    [11] M. A. Ahmed, S. A. Jimaa, and I. Abualhaol, “Ber enhancement of mimo-ofdm using an optimized nlms receiver,” in 2012 Sixth Asia Modelling Symposium, 2012, pp. 211–214.
    [12] U. Hamid, R. A. Qamar, and K. Waqas, “Performance comparison of time-domain and frequency-domain beamforming techniques for sensor array processing,” in Proceedings of 2014 11th International Bhurban Conference on Applied Sciences Technology (IBCAST) Islamabad, Pakistan, 14th - 18th January, 2014, 2014, pp. 379–385.
    [13] W. Shi, C. He, J. Huang, and Q. Zhang, “Fast music algorithm for joint dod-doa estimation based on gibbs sampling in mimo array,” in 2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 2016, pp. 1–4.
    [14] C. Jing, X. Tang, X. Zhang, L. Xi, and W. Zhang, “Time domain synchronous ofdm system for optical fiber communications,” China Communications, vol. 16, no. 9, pp. 155–164, 2019.
    [15] R. Ahmed, T. Wild, and F. Schaich, “Coexistence of uf-ofdm and cpofdm,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 2016, pp. 1–5.
    [16] P. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Transactions on Communications, vol. 42, no. 10, pp. 2908–2914, 1994.
    [17] C. L. Nguyen, A. Mokraoui, P. Duhamel, and N. Linh-Trung, “Time synchronization algorithm in ieee 802.11a communication system,” in 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012, pp. 1628–1632.
    [18] L. Huan, L. Xu, S. Mei, T. Zhenhui, and F. Chen, “An improved synchronization method for ieee 802.11a,” in 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2007, pp. 94–97.
    [19] M. Y. Siyal, J. Ahmed, U. Mujahid, and Taufeeq, “Spectral estimation algorithm for smart antenna system with modified ula,” in 2013 9th International Conference on Information, Communications Signal Processing, 2013, pp. 1–4.
    [20] R. M. Shubair and R. S. Al Nuaimi, “A displaced sensor array configuration for estimating angles of arrival of narrowband sources under grazing incidence conditions,” in 2007 IEEE International Conference on Signal Processing and Communications, 2007, pp.
    432–435.
    [21] R. Kozick, F. Elmer, and V. Nalbandian, “Phased arrays composed of antennas with steerable patterns,” in Proceedings International Radar Conference, 1995, pp. 737–741.
    [22] K. R. Borisagar, B. S. Sedani, and G. Kulkarni, “Simulation and performance analysis of lms and nlms adaptive filters in non-stationary noisy environment,” in 2011 International Conference on Computational Intelligence and Communication Networks, 2011, pp. 682– 686.

    QR CODE
    :::