| 研究生: |
楊智綱 Ji-Gang Yang |
|---|---|
| 論文名稱: |
高強度航空用7000系鋁合金機械性質、抗應力腐蝕破壞性及銲接熱影響區特性之研究 The Study on the Mechanical Properties, Resistance to Stress Corrosion Cracking and the Weld Heat-Affected Zone Characteristics of High Strength 7000 Series Aluminum Alloys |
| 指導教授: |
歐炳隆
Bin-Lung Ou |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 243 |
| 中文關鍵詞: | 鋁合金 、7000系 、焊接 、熱影響區 、力腐蝕破壞 |
| 外文關鍵詞: | Aluminum Alloys, 7000 series, Weld, HAZ |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
7050鋁合金採用的階段式淬火及時效(Step-Quench and Aging, SQA)熱處理,無論是熱輥軋材、冷輥軋材以及中間熱機處理(ITMT)材,其抗SCC的能力均有顯著地改善效果,不但大幅超越了RRA與T6處理,也較T73處理為佳,同時在強度上也大於T73處理者。對7050鋁合金而言,較高的再結晶比例會造成不整合(incoherent)分散粒子Al3Zr及高角度晶界數目的增加,因而提高材料的淬火敏感性,而導致強度下降。此外,高角度晶界比例的增加,也會提高SCC敏感性。冷輥軋材有較高的再結晶比例,因此強度及抗SCC能力較低。相比較下,熱輥軋材可獲得最少的再結晶比例,因而有最高的強度及優異的抗SCC能力。ITMT製程能產生細晶(grain refinement)的組織,可提高滑移的均勻性,因而提高抗SCC的能力,然而在強度上未能有效提昇。對7050合金而言,在高溫固溶處理後實施階段式淬火及時效(SQA)熱處理,可使晶界析出物粗大化及間距加大,且晶內析出緻密的強化相,因而可有效提昇抗SCC的能力並能兼顧到強度的要求。在本研究中若採用熱輥軋製程並實施SQA(220℃?10s or 200℃?30s)熱處理法,不但可得到比熱輥軋之T73處理還高的強度及抗SCC能力,同時也大幅減少時效處理的時間。
對7050及7075合金而言,再結晶組織及淬火敏感性,明顯的受到均質化條件所造成的分散粒子分佈的影響。當均質化處理的溫度愈高,其分散粒子分佈愈粗大稀疏,熱輥軋、固溶處理後再結晶的比例會愈高;而施以階段式均質化條件(Step-Homogenization, Step-H),可獲得最微細且緻密的分散粒子分佈,在熱輥軋、固溶處理時抑制再結晶的能力最大,再結晶的比例為最低。對含Zr之7050合金而言,細密的分散粒子分佈,可降低其淬火敏感性,但對含Cr之7075合金而言,反而會提高其淬火敏感性。對7050合金而言,施以均質化條件Step-H處理的試片經時效處理後其強度均較其他均質化條件處理之試片為高;而施以階段淬火及時效熱處理法(SQA)之試片在再結晶比例小於70%時其強度都高於T73處理者。但對於7075合金,施以SQA熱處理法之強度均遠低於T73處理者。7050合金在固溶處理時採用階段淬火及時效熱處理法(SQA),可有效提升其抗應力腐蝕破壞性並且兼顧到強度。且再結晶比例越低,其強度及抗應力腐蝕破壞性也越高。在本研究中,7050合金經Step-H階段式均質化處理並配合在固溶處理後採用SQA時效熱處理法,可獲得最高抗應力腐蝕破壞性與較佳的抗拉強度,且均較工業應用之傳統T73製程優異,實為一能有效兼顧抗應力腐蝕破壞性與強度之最佳製程。然而此製程對7075合金而言,則因淬火敏感性高而不適用。
7475-T7351鋁合金銲接熱影響區(HAZ)強度降低的主要原因為η?相轉變成穩定相η及η相之粗化所造成。而銲後施以T73人工時效(PWAA-T73)並不能提昇熱影響區強度。熱影響區之衝擊韌性與降伏強度有相反之趨勢,η相愈多且愈粗化韌性就愈高。7475-T7351縱向試片(7475L)的熱影響區強度、延性及韌性,均比短橫軸向試片(7475ST)來得高。
7005-T1銲接熱影響區(HAZ)強度弱化的原因是由於銲接熱循環造成差排的消解(annihilation)及再結晶所致。此HAZ之強度可藉由銲後T53人工時效(PWAA-T53)來提昇。相對而言,7005-T53銲接熱影響區強度弱化的主要原因是由於η?相的粗化及轉變成穩定相η所造成。而強度最低值出現在峰值溫度為250℃之熱循環附近,此過時效區域的強度無法藉由銲後T53人工時效來恢復。而在峰值溫度高於326℃以上之熱影響區域,因強化相η?之回溶造成強度弱化,此區域強度則可藉由銲後T53人工時效恢復至銲接前之強度。若考量HAZ之強度並於銲後施以T53人工時效,則選擇以T1狀態銲接可獲得較T53銲後為佳的強度。對T1狀態及T53狀態之7005合金而言,銲後施以T53人工時效均可提昇其熱影響區之衝擊韌性,而η?的粗化或析出穩定相η可提高其衝擊韌性,但會使強度(UTS及YS)降低。
7475鋁合金比7005鋁合金有較低的高溫強度、較差的熱延性與延性恢復能力,以及較寬的脆性溫度範圍(BTR),因而有較高的熱裂敏感性。而7475鋁合金之短橫軸向試片(7475ST)較縱向試片(7475L)有較高的熱裂敏感性。對以上兩合金而言,在熱延性試驗中,從零強度溫度(NST)冷卻過程所得到的強度及熱延性均小於從零延性溫度(NDT)冷卻過程所獲得的,此表示承受較高峰值溫度之HAZ區域會有較高的熱裂敏感性。7475鋁合金熱影響區熱裂發生的主要原因是由於低熔點之晶界偏析物或共晶相在高溫下產生不平衡共晶熔解而導致晶界液化(liquation)所致。而這些偏析物或共晶相含有較高含量的Mg、Cu、Zn之溶質元素。且由掃瞄式電子顯微鏡(SEM)之破斷面觀察及分析發現7475合金隨著延性之降低,破裂型態由延性穿晶轉為脆性沿晶模式。
For the 7050 alloy, the higher fraction of recrystallization would cause a larger amount of incoherent Al3Zr dispersoids and high-angle grain boundaries, which increases quench sensitivity and SCC susceptibility of the alloy. Therefore, both strength and SCC resistance of the cold-rolled alloy are low. On the other hand, the hot-rolled alloy has the highest strength and superior SCC resistance, as a result of the lowest fraction of recrystallization. The SCC resistance can be significantly enhanced owing to the fine grain structure obtained with the intermediate thermomechanical treatment (ITMT); however, the strength cannot be effectively improved. The proposed treatment, step-quench and aging (SQA), can significantly improve SCC resistance and attain optimum strength by controlling the grain boundary and matrix microstructures. Higher SCC resistance and strength together with much reduced aging time are obtained simultaneously with the proposed SQA(220℃/10s or 200℃/30s) after hot-rolling, as compared to those with the conventional T73 treatment.
The recrystallized structure and the quench sensitivity of the 7050 and 7075 aluminum alloys were found to be significantly affected by dispersoid distribution depending on the homogenization conditions. The finest and densest dispersoid distribution, generated through a step-homogenization (Step-H) treatment, can effectively inhibit recrystallization to obtain the smallest fraction of recrystallized structure. The distribution considerably lowers the quench sensitivity of the 7050 alloy, but increases the quench sensitivity of the 7075 alloy. For the 7050 alloy, the Step-H always achieved the highest strength and SCC resistance in all aged temper. The proposed SQA treatment can effectively improve both the SCC resistance and strength of 7050 alloy. In particular, combining the SQA treatment with the Step-H can result in much greater strength and SCC resistance than can be achieved by the conventional T73 treatment. However, this SQA treatment is not applicable to the 7075 alloy because of its high quench sensitivity.
The microstructure and mechanical properties of the HAZ of the 7475 and 7005 alloys were considerably influenced by the peak temperatures of thermal cycles. The decay of strength in weld HAZ of the 7475-T7351 alloy was primarily due to the η? phase transformation to the η phase and coarsening of the η phase. The HAZ strength in overaged zone cannot be improved by post-weld T73 artificial aging (PWAA-T73) treatment. The HAZ toughness of the 7475-T7351 alloy had an opposite trend as the yield strength. The HAZ strength, toughness, and ductility of the 7475-T7351 alloy in longitudinal direction were always greater than those in short-transverse direction.
The decay of strength in weld HAZ of the 7005-T1 alloy is due to the annihilation of dislocations and recrystallization. In contrast, for the 7005-T53 alloy, The decay of HAZ strength is primarily caused by the coarsening of theη? phase and transformation to the η phase. The yield strength of the HAZ in the 7005-T1 alloy is significantly improved by the postweld T53 aging (PWAA-T53) treatment. However, the 7005-T53 alloy has the weakest HAZ region at peak temperature 250℃. This overaged zone has the maximum amount of the coarser η? and ηphases, and does not respond well to postweld T53 aging. For peak temperature at 326℃ and above, the strength and toughness curves of the HAZ in both T1 and T53 tempered 7005 alloys coincide because of the same microstructure. The postweld T53 aging treatment can improve the impact toughness of the HAZ.
As compared to the 7005 alloy, the 7475 alloy exhibited lower hot ductility and strength, significantly poor ductility recovery on cooling from the nil-strength temperature (NST), considerably wider brittle temperature range (BTR) and crack susceptible region (CSR), and thus greater susceptibility to HAZ hot cracking. The 7475 alloy in longitudinal direction had a lower crack susceptibility than that in short-transverse direction. The results showed good agreement with those of the spot-Varestraint tests. Scanning electron microscopy (SEM) revealed that the ductility loss was accompanied by fracture transition from ductile transgranular mode to brittle intergranular mode. The HAZ hot cracking in alloy 7475 due to the loss of ductility was primarily caused by liquation of low-melting-point grain boundary segregates or eutectics that contained great amount of Mg, Cu, and Zn.
1. I. J. Polmear: Light Alloys?Metallurgy of the Light Metals, 2nd ed., Edward Arnold, London, England, 1989, pp. 18-143.
2. K. Asano and K. I. Hirano: Precipitation Process in an Al-Zn-Mg Alloy, Trans. JIM, vol. 9, 1968, pp.24-34.
3. G. W. Lorimer and R. B. Nicholson: Further Results on the Nucleation of Precipitates in the Al-Zn-Mg system, Acta Metallurgica, vol. 14, 1966, pp. 1009-1013.
4. T.H. Sanders, Jr. and E. A. Starke, Jr.: Relationship of Microstructure to Monotonic and Cyclic straining of two Age Hardening Aluminum Alloys, Metall. Trans., vol. 7A, 1976, pp. 1407-1418.
5. M. O. Speidel: Stress Corrosion Cracking of aluminum alloys, Metall. Trans. A, vol. 6A, 1975, pp. 631-642.
6. W. Gruhl: Stress Corrosion Cracking of High Strength Aluminum Alloys, Z. Metallkd., vol. 75, 1984, pp. 819-826.
7. B.M. Cina: U.S. Patent No. 3856584, Dec. 24, 1974.
8. T. D. Burleigh: The Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys, Corrosion, vol. 47, 1991, pp. 89-98.
9. K. Rajan, W. Wallace, and J. C. Beddoes: Microstuctureal Study of a High-Strength Stress-Corrosion Resistant 7075 Aluminum Alloy, J. Mater. Sci., vol. 17, 1982, pp. 2817-2824.
10. M. U. Islam and W. Wallace: Stress-Corrosion-Crack Growth Behavior of 7475 T6 Retrogression and Reaging Aluminum Alloy, Met. Technol., vol. 11, 1984, pp.320-322.
11. J.K. Park: Influence of Retrogression and Reaging Treatments on the Strength and Stress Corrosion Resistance of Aluminium Alloy 7075-T6 , Mat. Sci. and Eng., vol. A103, 1988, pp. 223-231.
12. N. Adler, R. DeIASI and G. Geschwind: Influence of Microstructure on the Mechanical Properties and Stress Corrosion Susceptibility of 7075 Aluminum Alloy, Metall. Trans., vol. 3, 1972, pp.3191-3200.
13. T. Ohnishi, H. Shiota: Heat Treatment to Reduce the Susceptibility of Al-Zn-Mg-Cu Alloy to Stress Corrosion Cracking, J. Jpn Inst. Light Met., vol. 36, 1986, pp. 647-656.
14. L. Christodoulou and H. M. Flower: Hydrogen Embrittlement and Trapping in Al-6%Zn-3%Mg, Acta Metall., vol. 28, 1980, pp. 481-487.
15. P. K. Poulose, J. E. Morral, and A. J. McEvily: Stress Corrosion Crack Velocity and Grain Boundary Precipitates in an Al-Zn-Mg Alloy, Metall. Trans., vol. 5, pp. 1393-1400.
16. A.J. Cornish and M.K.B. Day: The Effect of Variable Quenching Conditions on the Relationship between the Stress-Corrosion-Resistance, Tensile Properties, and Microstructure of a High-Purity Al-Zn-Mg Alloy, J. Inst. Metals, vol. 99, 1971, pp.377-384.
17. F. E. Watkinson and J. C. Scully: The Stress-Corrosion Cracking of a High Purity Al-6Zn-3Mg Alloy, Corr. Sci., vol. 12, 1972, pp. 905-924.
18. J. De Ardo, Jr. And R. D. Townsend: The Effect of Microstructure on the Stress-Corrosion Susceptibility of High Purity Al-Zn-Mg Alloy in a NaCl Solution, Metall. Trans., vol. 1, 1970, pp. 2573-2581.
19. D. Nguyen, A. W. Thompson and I. M. Bernstein: Microstructural Effects on Hydrogen Embrittlement in High Purity 7075 Aluminum Alloy, Acta Metall., vol. 35, 1987, pp. 2417-2425.
20. R. F. Decker: Alloy Design, Using Second Phase, Metall. Trans., vol. 4, 1973, pp. 2495-2518.
21. H. A. Holl: Deformation Substructure and Susceptibility to Intergranular Stress Corrosion Cracking in an Aluminum Alloy, Corrosion-NACE, June 1967, pp. 173-180.
22. S. L. Pyun, T. S. Suh and H. P. Kim: Microsturctural Dependence of Stress-Corrosion Cracking Behavior in Commercial Al-Zn-Mg-Cu Alloy(AA7075), Werkst. and Korros., vol. 38, 1987, pp. 129-134.
23. R. K. Viswanadham, T. S. Sun and J. A. S. Green: Grain Boundary Segregation in Al-Zn-Mg Alloys-Implications to Stress Corrosion Cracking, Metall. Trans., vol. 11A, 1980, pp. 85-89.
24. G. M. Scamans, N. J. H. Holroyd and C. D. S. Tuck: The Role of Magnesium Segregation in the Intergranular Stress Corrosion Cracking of Aluminum Alloys, Corrosion Sci., vol. 27, 1987, pp. 329-347.
25. J. R. Pickens and T. J. Langan: The Effect of Solution Heat-Treatment on Grain Boundary Segregation and Stress-Corrosion Cracking of Al-Zn-Mg Alloys, Metall. Trans., 18A, 1987, pp.1735-1744.
26. S. M. Lee, S. I. Pyun and Y. G. Chun: A Critical Evaluation of the Stress-Corrosion Cracking Mechanism in High-Strength Aluminum Alloys, Metall. Trans., vol. 22A, 1991, pp. 2407-2413.
27. M. Kanno and Bin-Lung Ou: Heterogeneous precipitation of intermediate phases on Al3Zr particles in Al-Cu-Zr and Al-Li-Cu-Zr alloys, Mater. Trans., JIM, vol. 32, No. 5, 1991, pp. 445-450.
28. M. Conserva, E. Di Russo and O. Caloni: Comparison of the Influence of Chrominum and Zirconium on the Quench Sensitivity of Al-Zn-Mg-Cu Alloys, Metall. Trans., vol. 2, 1971, pp. 1227-1232.
29. A.K. Vasudevan and R. D. Doherty: Aluminum Alloys - Contemporary Research and Applications, Academic Press, Inc., San Diego, 1989, pp. 35-170.
30. R. W. Armstrong: The Influence of Polycrystal Grain Size on Several Mechanical Properties of Materials, Metall. Trans., vol. 1, 1970, pp. 1169-1176.
31. J. A. Wert, N. E. Paton, C. H. Hamilton, and M. W. Mahoney: Grain Refinement in 7075 Aluminum by Thermomechanical Processing, Metall. Trans., 12A, 1981, pp. 1267-1276.
32. Bernard Baudelet: Industrial Aspects of Superplasticity, J. Mater. Sci. and Eng., vol. A137, 1991, pp. 41-55.
33. Sindo Kou: Welding Metallurgy, John Wiley & Sons, NY, 1987, pp.129-295.
34. J. R. Davis: Aluminum and Aluminum Alloys?ASM Specialty Handbook, ASM International, 1993, pp. 376-419.
35. ASM Handbook volume 6 - Welding, Brazing, and Soldering, 1993, pp.528-540,722-739.
36. “Welding Kaiser Aluminum”,1st ed. Kaiser Aluminum & Chemical Sales, Inc., 1984, chapter 2-4,7-9,14,21.
37. J. Koziarski: The Welding Journal, Oct., 1953, pp.970-986.
38. S. Kou, and Y. Le: Grain structure and Solidification Cracking in Oscillated Arc Welds of 5052 Aluminum Alloy, Metall. Trans. 16A, 1985, pp.1345-1352.
39. A.J. Sunwoo, E.L. Bradley III and J.W. Morris, Jr.: Effects of Heat-Affected Zone Peak Temperatures on the Microstructure and Properties of 2090 Al Alloy, Metal. Trans. A, vol. 21A, 1990, pp. 2795-2804.
40. T. Zacharia and D.K. Aidun: Elevated Temperature Mechanical Properties of Al-Li-Cu-Mg Alloy, Weld. J., 1988, pp. 281s-288s.
41. J.P. Balaguer, E.F. Nippes and D.W. Walsh: Hot-Ductility Behavior of two Aluminum Alloys, Proceedings of an International Conference in Welding Research. Gatlinburg, Tenn., 1986, pp. 723-728.
42. R.Y. Hwang and C.P. Chou: Hot ductility behaviour of Al-Li alloy AA2091-T3, Sci. and Tech. of Welding and Joining vol. 2, No. 6, 1997, pp. 261-268.
43. A.R.E. Singer and P.H. Jennings: Hot Shortness of the Aluminum-Silicon Alloys of Commercial Quality, J. Inst. Met., vol. 73, 1947, pp. 197-212.
44. W. Lin, J.C. Lippold and W.A. Baeslack III: An Evaluation of Heat-Affected Zone Liquation Cracking Susceptibility, Part 1: Development of a Method for Quantification, Weld. J., vol. 72, No. 4, 1993, pp. 135s-153s.
45. E.F. Nippes, W.F. Savage, B.T. Bastin, H.F. Mason and R.M. Curran: An Investigation of the Hot Ductility of High Temperature Alloys, Weld. J., vol. 34, No. 4, 1995, pp. 183s-196s.
46. C.H. Kreischer: A Critical Analysis of the Weld Heat-Affected-Zone Hot Ductility Test, Weld. J., vol. 45, No. 8, 1963, pp. 49s-59s.
47. C.D. Lundin, C.Y.P. Qiao and C.H. Lee: Standardization of Gleeble Hot Ductility Testing: Part I: Historical Review, Weldability of Materials, ASM International, Materials Park, Ohio, 1990, pp.1-8.
48. P. N. T. Unwin, R. B. Nicholson: The Nucleation and Initial Stages of Growth of Grain Boundary Precipitates in Al-Zn-Mg and Al-Mg Alloys, Acta Metallurgica, vol. 17, 1969, pp. 1379-1393.
49. J.J. Thompson, E. S. Tankins and V. S. Agarwala: A Heat Treatment for Reducing Corrosion and Stress Corrosion Cracking susceptibilities in 7XXX Aluminum Alloys, Materials Performance , 1987, pp.45-52.
50. M.O. Speidel and M.V. Hyatt: Advances in Corrosion Science and Technology, vol. 2, Plenum Press, NY, 1972. , pp. 115-127
51. A.J. Sedriks, J. A. S. Green and D. L. Novak: The Influence of Heat Treatment on the Stress-Corrosion Susceptibility of a Ternary Al-5.3 Pct Zn-2.5 Pct Mg Alloy, Metall. Trans., vol. 4, 1973, pp.1992-1994.
52. J.K. Park, and A.J. Ardell: Precipitate Microstructure of Peak-aged 7075 Al, Scripta Metallurgica, vol. 22, No. 7, 1988, pp. 1115-1119.
53. W. Lacom, H.P. Degischer, A.M. Zahra and C.Y. Zahra: On Calorimetric and Electron Microscopic Studies of Al-Zn-Mg Alloys, Scripta Metallurgica, vol. 14, 1980, pp. 253-254.
54. F. Habiby, A. Ul Haq, F.H. Hashmi and A.Q. Khan: Some Remarks on the Hardness and Yield Strength of Aluminum Alloy 7075 as a Function of Retrogression Time, Metall. Trans. A, vol. 18A, 1987, pp. 350-353.
55. D. J. Lloyd and M. C. Chaturvedi: A calorimetric study of aluminum alloy AA-7075, J. of Mater. Sci., vol. 17, 1982, pp. 1819-1824.
56. P.N. Adler and Richard DeIASI: Calorimetric Studies of 7000 Series Aluminum Alloys: II. Comparison of 7075, 7050, and RX720 Alloys, Metall. Trans. A,. vol. 8A ,1977, pp. 1185-1190.
57. Richard DeIASI and P.N. Adler: Calorimetric Studies of 7000 Series Aluminum Alloys: I. Matrix Precipitate Characterization of 7075, Metall. Trans. A, vol. 8A, 1977, pp. 1177-1183.
58. E.S. Tankins and W.E. Frazier: Differential scanning calorimetry studies of the corrosion-resistant behavior in the 7000 series aluminum alloys, Materials Performance, NACE, 1987, pp. 37-44.
59. J. Gjonnes and CHR. J. Simensen: An electron microscope investigation of the microstructure in an Aluminum-Zinc-Magnesium alloy, Acta Metall. Vol. 18, 1970, pp. 881-890.
60. J.K. Park, and A.J. Ardell: Correlation between Microstructure and Calorimetric Bebavior of Aluminum Alloy 7075 and Al-Zn-Mg Alloys in Various Tempers, Mater. Sci. and Eng., A114, 1989, pp. 197-203.
61. R. E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed., Boston, PWS Publishing Company, 1991, pp.515-535.
62. C.E. Deiter: Mechanical Metallurgy, 3rd ed., McGraw-Hill, 1986, pp. 65-158.
63. 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚:“工程材料科學”,全華科技圖書出版,台北,台灣,民國82年7月,pp.433-486。
64. M. Conserva and P. Fiorini: Interpretation of Quench-Sensitivity in Al-Zn-Mg-Cu Alloys, Metall. Trans., vol. 4, 1973, pp.857-862.
65. W. F. Smith and N. J. Grant: The Effect of Two-Step Aging on the Quench Sensitivity of an Al-5 Pct Zn-2 Pct Mg Alloy with and without 0.1 Pct Cr, Metall. Trans., vol. 1, 1970, pp. 1735-1740.
66. R. C. Dorward and D. J. Beerntsen: Grain Structure and Quench-Rate Effects on Strength and Toughness of AA7050 Al-Zn-Mg-Cu-Zr Alloy Plate, Metall. Mater. Trans. A, 26A, 1995, pp.2481-2484.
67. A.J. Bryant: The Effect of Composition upon the Quench-Sensitivity of Some Al-Zn-Mg Alloys, J. Inst. Metals, vol. 94, 1966, pp.94-99.
68. S. Chang and J. E. Morral: The Influence of Quenching Rate on Precipitate-Free-Zones in an Al-Zn-Mg Alloy, ACTA Metal., vol. 23, 1975, pp.685-689.
69. R. D. Doherty: Role of interfaces in kinetics of internal shape changes, Metal Science, vol. 16, 1982, pp.1-13.
70. H. M. Chan and F. J. Humphreys: Effect of Particle Stimulated Nucleation on Orientation of Recrystallized Grains, Metal Sci,. vol. 18, 1984, pp. 527-529.
71. H. M. Chan and F. J. Humphreys: The Recrystallization of Aluminium-Silicon Alloys Containing a Bimodal Particle Distribution, Acta Metallurgica, vol. 32, 1984, pp. 235-243.
72. D. Williamand and Jr. Callister : Materials Science and Engineering , 3rd ed. , New York , John Wiley & Sons , Inc , 1994 , pp.92-162.
73. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, London, Chapman & Hall, 1993, pp. 44-47, 71-75 and 314-317.
74. D.S. Thompson, in R.F. Schwenker, Jr., and P. D. Garn (eds.): Thermal Analysis, vol. 2, Academic Press, New York, 1969, pp. 1147-1153.
75. R. E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed., Boston, PWS Publishing Company, 1991, pp. 461-466.
76. John E. Hatch: Aluminum-Properties and Physical Metallurgy, ASM, Metals Park, Ohio, 1984, pp. 58-104 and 134-197.
77. G. Itoh, H. Saitoh, Bin-Lung Ou, H. Suzuki: Effect of Homogenization Conditions on Recrystallized Structure in Al-Zn-Mg-Cu Alloys Containing Chrimium, J. of Japan Inst. of Light Metals, vol. 36, No, 8, 1986, pp. 485-490.
78. K.R. Van Horn: Aluminum vol. 1, ASM, Cleveland, Ohio,1967, chap.5.
79. J. T. Staley: Quench factor analysis of aluminum alloys, Mater. Sci. and Tech., vol. 3, 1987, pp. 923-935.
80. W. F. Smith and N. J. Grant: The Effect of Multiple-Step Aging on the Strength Properties and Precipitate-Free Zone Widths in Al-Zn-Mg Alloys, Metall. Trans., vol. 1, 1970, pp. 979-983.
81. J. A. Wagner and R. N. Shenoy: The Effect of Copper, Chromium, and Zirconium on the Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloys, Metall. Trans. A, vol. 22A, 1991, pp. 2809-2818.
82. J. Bryant, A. T. Thomas: The Relationship between Grain Structure and Quench-Sensitivity of an Extruded Al-Zn-Mg Alloy, J. Inst. Metals, vol. 100, 1972, p.40-44.
83. M. Kanno, Bin-lung Ou and Goroh Itoh: Quench sensitivity of some age-hardenable aluminium alloys, Proceedings of the 2nd international conference of aluminium alloys, 1990, pp.1-6.
84. H. Suzuki, M. Kanno and H. Saitoh: Effects of Zirconium Addition on the Quench-Sensitivity of AlZnMgCu Alloys, Aluminum, vol. 59, 1983, pp. 944-947.
85. H. Suzuki, M. Kanno and H. Saitoh: Influence of Working on Quench Sensitivity of Al-Zn-Mg-Cu Alloy containing Transition Elements, J. Japan Inst. Light Met., vol. 33, 1983, pp. 399-406.
86. H. Suzuki, M. Kanno, and H. Saitoh: Different Effects Between Zr and Cr Additions on Recrystallization of Hot-Rolled Al-Zn-Mg-Cu Alloys, J. Japan Inst. Light Metals, vol. 36, No. 1, 1986, pp. 22-28.
87. D. A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, London, Chapman & Hall, 1993, pp. 263-308.
88. E.D. Russo, M. Consserva, M. Buratti and F. Gatto : A New Thermo-Mechanical Procedure for Improving the Ductility and Toughness of Al-Zn-Mg-Cu Alloys in the Transverse Directions, J. Mater. Sci. and Eng., vol. 14, 1974, pp. 23-36.
89. J. Waldman, H. Sulinski and H. Markus: The Effect of Ingot Processing Treatment on the Grain Size and Properties of Al Alloy 7075, Metall. Trans., vol. 5, 1974, pp. 573-584.
90. H.Yoshida: Journal of the JSTP, vol.34, 390, 1993, pp.764-770.
91. R. J. H. Wanhill and G. F. J. A. van Gestel: Thermomechanical Treatment of Aluminum Alloys, Aluminum, vol. 54, 1978, pp. 573-580.
92. E. D. Russo, M. Conserva, F. Gatto and H. Markus: Thermomechanical Treatments on High Strength Al-Zn-Mg(-Cu) Alloys, Metall. Trans., vol. 4, 1973, pp. 1133-1144.
93. N. E. Paton, C. H. Hamilton, J. Wert and M. Mahoney: Characterization of Fine-Grained Superplastic Aluminum Alloys, J. of Metals, Auguest 1982, pp. 21-27.
94. E. W. Lee: Application of a Thermomchanical Process for the Grain Refinement of Aluminum Alloy 7475, Mater. Sci. & Eng., vol. 96, 1987, pp. 253-258.
95. Mars G. Fontana: Corrosion Engineering 3rd ed., McGRAW-HILL, 1987, pp.109-152.
96. M. O. Speidel: Current Understanding of Stress Corrosion Crack Growth in Aluminum Alloys, The Theory of Stress Corrosion Cracking in Alloys, ed. by Dr. J. C. Scully, NATO, Brusels, 1971, pp. 333-340.
97. B.F. Brown: Stress Corrosion Cracking of High Strength Steels, The Theory of Stress Corrosion Cracking in Alloys, ed. by Dr. J. C. Scully, NATO, Brusels, 1971, pp. 186-204.
98. Denny A. Jones: Principles and Prevention of Corrosion, 2nd ed., Prentice Hall, 1997, pp. 235-356.
99. H.P. Van Leeuwen, J. A. M. Boogers and C. J. Stentler: The Contribution of Corrosion to the Stress Corrosion Cracking of Al-Zn-Mg Alloys, Corrosion, vol. 31, No. 1, 1975, pp. 23-29.
100. E. Dix: Trans. Am. Inst. Min. Metall. Eng., 137, 1940, pp. 11-17.
101. A. Joshi, C.R. Shastry and M. Levy: Effect of Heat Treatment on Solute Concentration at Grain Boundaries in 7075 Aluminum Alloy, Metall. Trans., vol. 12A, 1981, pp. 1081-1088.
102. A.H. Le and R. T. Foley: On the Nature of the Occluded Cell in the Stress Corrosion Cracking of AA7075-T651 Analysis of the Solution Inside the Crack, Corrosion-NACE, 1984, vol. 40, pp.195-197.
103. N.J.H. Holroyd, G.M. Scamans and R. Hermann: Conference Proceedings, Corrosion Chemistry Within Pits, Crevices, and Cracks (London, UK: HMSO,) 1987, pp. 495-510.
104. Y. Choi, H. C. Kim and S. I. Pyun: Stress Corrosion Cracking of Al-Zn-Mg Alloy AA-7039 by Slow Strain-Rate Method, J. Mater. Sci., vol. 19, 1984, pp.1517-1521.
105. R. J. Gest, A. R. Troiano: Stress Corrosion and Hydrogen Embrittle in an Aluminum Alloy, Corrosion, NACE, vol. 30, 1974, pp. 274-279.
106. E. N. Pugh: Progress Toward Understanding the Stress Corrosion Problem, Corrosion, vol. 41, 1985, pp. 517-526.
107. H. Kanematsu, M. Okido and T. Oki: Potentiostatic Slow Strain Rate Tests and Analysis of Fracture Surface On Three Kinds of Al-Zn-Mg Alloys, J. Jpn Inst. Light Met., vol. 36, 1986, pp. 333-338.
108. T. Oki, M. Okido and H. Kanematsu: Fracture Mode of Al-Zn-Mg Alloys in Various Environments, J. Jpn Inst. Light Met., vol. 36, 1986, pp. 308-314.
109. C.A. Loto and R. A. Cottis: Electrochemical Noise Generation During Stress Corrosion Cracking of the High Strength Aluminum AA7075-T6 Alloy, Corrosion, vol. 45, 1989, pp. 136-141.
110. 劉永輝、張佩芬: 金屬腐蝕學原理,航空工業出版社, 1993, pp. 124-150.
111. T. Oka: Shizen Kagaku, vol. 32, No. 2, 1988, pp.17-29.
112. C.A. Zappfe, C. E. Sims: Transactions AIME, vol. 145, 1941, pp. 225.
113. A.R. Troiano: Transactions ASM, 1960, vol. 52, pp. 54.
114. R.A. Oriani and P.H. Josephic: Equilibrium Aspects of Hydrogen-Induced Cracking of Steels, Acta Met., vol. 22, No. 9, 1974, pp. 1065-1074.
115. S.P. Lynch: Environmentally assisted cracking-Overview of evidence for an adsorption-induced localized-slip process, Acta Metall., vol. 36, No. 10, 1988, pp. 2639-2661.
116. S.P. Lynch: Mechanisms of Intergranular Fracture, Materials Science Forum, vol. 46, 1989, pp. 1-24.
117. W. Gruhl: The Stress Corrosion Behavior of High Strength AlZnMg Alloys, Aluminium, vol. 54, 1978, pp. 323-325.
118. G.M. Scamans: Evidence for Crack-Arrest Markings on Intergranular Stress Corrosion Fracture Surfaces in Al-Zn-Mg Alloys, Met. Trans. A 11A, 5, 1980, pp. 846-850.
119. P. Martin, J. I. Dickson and J. P. Bailon: Stress Corrosion Cracking in Aluminum Alloy 7075-T651 by Discrete Crack Jumps as Indicated by Fractography and Acoustic Emission, Mater. Sci. & Eng., vol. 69, 1985, pp. L9-L13.
120. M. Baumgartner and H. Kaesche: Intercrystalline Corrosion and Stress Corrosion Cracking of AlZnMg Alloys, Corrosion, vol. 44, 1988,pp. 231-239.
121. D. Hardie, N. J. H. Holroyd and R. N. Parkins: Effect of Hydrogen on Ductility of a High-Strength Al-Zn-Mg-Cu Alloys, Metal Science, vol. 13, 1979, pp. 603-610.
122. R.E. Ricker and D.J. Duquette: Metall. Trans. A, vol. 19A, No. 7, 1988, pp. 1775-1783.
123. V.M. Polyanskii: Sov. Mater. Sci. vol. 21, No. 4, 1985, pp. 301-309.
124. L. Ratke and W. Gruhl: Influence of Notches on the Stress Corrosion Cracking Behavior of AlZnMg Alloys, Werkst. U. Korro., vol. 31, 1980, pp. 768-773.
125. J. Albrecht, I. M. Bernstein and A. W. Thompson: Evidence for Dislocation Transport of Hydrogen in Aluminum, Metall. Trans., 13A, 1982, pp. 811-820.
126. D.A. Hardwick, M. Taberi, A.W. Thompson and I.M. Bernstein: Hydrogen Embrittlement in a 2000-Series Aluminum Alloy, Met. Trans., vol. 13A, No. 2, 1982, pp. 235-239.
127. D.A. Hardwick, A. W. Thompson, I. M. Bernstein: The Effect of Copper Content and Microsturcture on the Hydrogen Embrittlement of Al-6Zn-2Mg Alloys, Metall. Trans., 14A, 1983, pp. 2517-2526.
128. G.M. Scamans, R. Alani and P. R. Swann: Pre-exposure Embrittlement and Stress Corrosion Failure in Al-Zn-Mg Alloys, Corr. Sci., vol. 16, 1976, pp. 443-459.
129. M. Talianker and B. Cina: Retrogression and Reaging and the Role of Dislocations in the Stress Corrosion of 7000-Type Aluminum Alloys, Metall. Trans. A, 20A, 1989, pp. 2087-2092.
130. G.M. Scamans: Hyddrogen Bubbles in Embrittled Al-Zn-Mg Alloys, J. Mater. Sci., vol. 13, 1978, pp.27-36.
131. J. Albrecht, A. W. Thompson and I. M. Bernstein: The Role of Microstructure in Hydrogen-Assisted Fracture of 7075 Aluminum, Metall. Trans., 10A, 1979, pp. 1759-1766.
132. Y. Jin, C. Li, J. Ru and M. Yan: On the Stress Corrosion Behavior of 7050 Al Alloys, Materials Letters, vol. 12, 1991, pp. 376-380.
133. H-P. Kim, R-H. Song and S-I. Pyun: Effects of Hydrogen Recombination Poisons on Stress Corrosion Crack Initiation and Propagation in Al-Zn-Mg Alloys, Br. Corros. J. vol. 23, No. 4, 1988, pp. 254-258.
134. T.C. Tsai, T. H. Chuang: Role of grain size on the stress corrosion cracking of 7475 aluminum alloys, Mater. Sci Eng., A225, 1997, pp.135-144.
135. J. K. Park and A. J. Ardell: Effect of Retrogression and Reaging Treatments on the Microsturcture of Al-7075-T651, Metall. Trans. A, vol. 15A, 1984, pp. 1531-1543.
136. A.J. Sedriks, J. A. S. Green and D. L. Novak: Comparison of the Corrosion and Stress-Corrosion Behavior of a Ternary Al-Zn-Mg Alloy, Metall. Trans., vol. 1, 1970, pp. 1815-1819.
137. J. A. S. Green, W. G. Montague: Observations on the Stress Corrosion Cracking of an Al-5%Zn-2.5%Mg Ternary and Various Quaternary Alloys, Corrosion-NACE, vol. 31, 1975, pp. 209-213.
138. P. Doig and J. W. Edigton: Influence of Precipitate Free Zones on the Stress Corrosion Susceptibility of a Ternary al-5.9wt%Zn-3.2wt%Mg Alloy, Corrosion-NACE, vol. 31, 1975, pp.347-352.
139. K. Ural: A study of Optimization of Heat-Treatment Conditions in Retrogression and Reaging Treatment of 7075-T6 Aluminum Alloy, J. Mater. Sci. Lett., vol. 13, 1994, pp. 383-385.
140. D. Altenpohl: Aluminium and Aluminuim Legierungen, Springer Verlag, 1965, pp. 773
141. W. Gruhl: The Stress-Corrosion Behavior of High-Strength Al-Zn-Mg Alloys, International Congress on Aluminum Alloys in the Aircraft Industry, Turin, 1976, pp. 171-174.
142. B. Sarkar, M. Marek and E. A. Starke, Jr.: The Effect of Copper Content and Heat Treatment on the Stress Corrosion Characteristics of Al-6Zn-2Mg- X Cu Alloys, Metall. Trans., vol. 12A, 1981, pp. 1939-1943.
143. Z. Lin, H. Ru, G. Zhao and G. Sun: 10th International Congress on Metallic Corrosion, vol. 3, 1988, pp. 2369-2378.
144. I.J. Polmear , M. Sc., and B. Met. E. :The Properties of Commercial Al-Zn-Mg Alloys?Practical Implications of Trace Additions of Silver, J. Inst, Metals , vol .89 , 1961 , pp.193-202.
145. Harushige Tsubakino, Atsushi Yamamoto and Tadakazu Ohnishi: Effect of Fe and Si on Precipitation of 7050 Aluminum Alloys, International Conference on Thermomechanical Processing of Steels and Other Materials, 1997, pp. 1059-1064.
1. 大塚良達、菊地茂幸:“7050系合金の應力腐食割ね感受性に及ばす鐵、けい素及びジルコニウスの影響”,輕金屬學會研究部會報告書,No. 13,1985, pp. 117-123
147. Henk F. de Jong: Evaluation of the Constant Strain Rate Test Method for Testing Stress Corrosion Cracking in Aluminum Alloys, Corrosion, vol. 34, No. 1, 1978.
148. ASTM Standard G129-95: Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking, pp.517-521.
149. J. Koziarski: Some Considerations on Weldability of Aluminum Alloys, The Welding Journal, 1953, pp. 970-986.
150. Paul E. Brown and C.M. Adams, Jr.: Fusion Zone Structures and Properties in Aluminum Alloys, Weld. J., 1960, pp. 520s-524s.
151. W.L. Burch: The Effect of Welding Speed on Strength of 6061-T4 Aluminum Joints, Weld.J.37, 1958, pp. 361s-367s.
152. D.E. Schillinger, I.G. Betz, F.W. Hussey and H. Markus: Improves Weld Strength in 2000 Series Aluminum Alloys, Weld. J., 1963, pp. 269s-275s.
153. C.E. Cross, W.T. Tack, L.W. Loechel, and L.S. kramer: Aluminum Weldability and Hot Tearing Theory, Weldability of Materials, AMS. Materials, Park, Ohio, 1990, pp.275-282.
154. W.I. Pumphery and D.C. Moore: Cracking during and after Solidification in some Aluminum-Copper-Magnesium Alloys of High Purity, J. Inst. Metals, 73, 1948, pp.425-438.
155. W.I. Pumphrey and J.V.Lyons: Cracking during the Casting and Welding of the More Common Binary Aluminum Alloys of Commercial Quality, J. Inst. Metals, vol. 74, 1948, pp. 439-455.
156. I.D. Dowd: Weld Cracking of Aluminum Alloys, Weld. J., vol. 31, No.10,1952, pp. 448s-456s.
1. H. T. Kim, S.W. Nam and S.H. Hwang: Study on the solidification cracking behaviour of high strength aluminum alloy welds-effect of alloying elememts and solidification behaviours, J. Mater. Sci.,31, 3, 1996, Chapman & Hall Ltd, pp.2859-2864.
158. M.C. De Macedo, R.R. Avillez and I.G. Solorzano: Differential scanning calorimetric study of phase stability in 2091 (Al-Li-Cu-Mg-Zr) alloy submitted to welding operations, Scripta Metall., vol. 31, No. 12, 1994, pp. 1701-1704.
159. Toshio Kuroda, Shinya Kanamitsu and Toshio Enjo: Corrosion characteristics in weld heat-affected zone of Al-Zn-Mg alloy, Trans. of JWRI (Japanese Welding Research Institute), vol.19, No. 1, 1990, pp.87-92.
160. Carlo B. Sonnino, Tom Ford, and Virginia Vanark: ASTM STP 1134, 1992,pp.132-140.
161. R.S. Bray, and L.J. Lozano: Weld. J. 44 , 1965, pp.424s-432s.
162. M. Miyazaki, K.Nishio, M.Katoh, S.Mukae and H.W. Kerr: Weld. J., 1990, pp. 362s-371s.
163. W.L.Burch: The Effect of Welding Speed on the Strength of 6061-T4 Aluminum Joints, Weld. J., vol.37, 8 (1958) pp.361s-367s.
164. H.Hug, Unidur: aluminum Suises, vol. 13, 2, 1963.
165. A.J. Sunwoo, E.L. Bradley III and J.W. Morris, Jr.: Effects of Heat-Affected Zone Peak Temperatures on the Microstructure and Properties of 2090 Al Alloy, Metal. Trans. A, 21A, 1990, pp. 2795-2804.
166. R.J. Brungraber and F.G. Nelson: Effect of Welding Variables on Aluminum alloy Weldments, Weld. J. Vol.52 No.3, 1973, pp.97s
167. T. Ma and G. den Ouden: Softening behaviour of Al-Zn-Mg alloys due to welding, Mater. Sci. Eng. A, v266, n 1, 1999, p. 198-204.
168. G.E. Metzger: Some Mechanical Properties of Welds in 6061 Aluminum Alloy Sheet, Weld. J. Vol.56, No.10,(1967) pp.457s-469s.
169. Arnt O. Kluken and Borge Bjorneklett: A study of Mechanical Properties for Aluminum GMA Weldments, Weld. J. 1997, p 39-44.
170. D.E. Schillinger, I.G. Betz, F.W. Hussey and H. Markus: Weld. J., 1963, pp.269s-275s.
171. B. Hemsworth, T. Boniszewski, and N.F. Eaton: Classification and definition of high-temperature welding cracks in alloys, Metal Const. & Brit. Weld. 2, 1969, pp.5-16
172. F. Matsuda: Hot Crack Susceptibility of Metal, Advances in Welding Metallurgy, JWS, 1990, pp. 26-58.
173. J.H. Rogerson, and J.C. Borland: Transactions of the Metallurgical Society of AIME, 227,2, 1963, 2
174. B.I. Medovar: On the nature of weld hot cracking, Abtom. Svark 7(4) Brutcher Translations No. 3400, 1954, pp. 12-28
175. V. A. Torpov: On the mechanism of hot cracking, Brutcher Translations No. 3982, 1957
176. W.L. Pumphrey and P.H. Jennings: A consideration of the nature of brittleness above the solidus in castings and welds on aluminum alloys, J.Inst. Metals. 75, 1948, pp.235-256.
177. W.S. Pellini: Strain theory of hot tearing, Foundry, vol. 80, No. 11, 1952, pp.125-133.
178. V.N. Saveiko: Liquid film in weld hot cracking, Lit Proiz 8, 1960, pp.33-42.
179. J.C. Borland and R.N. Younger: some aspects of cracking in welded Cr-Ni austentic steels, Brit. Weld. J., vol. 6, No. 1, 1960, pp. 9-46
180. J.C. Borland: Generalized theory of super-solidus cracking in weld and casting, Brit. Weld. J., vol. 7, No. 8, 1961, pp. 508-512.
181. J.C. Borland: Fundamentals of solidification cracking in welds, Welding and Metal Fabrication, Part I, (1/2), pp. 19-29, part II, (3), 1979, pp. 99-107,
182. F. Matsuda, H. Nakagawa, and K. Sonoda: Dynamic observation of solidification and solidification cracking during welding with optical microscope, Trans. JWRI 11(2), 1982, pp.67-77
183. N.S. Stoloff and T.L. Johnson: Aspect of liquid filled crack in welds, Acta Metall. 11(4), 1963, pp.251-256.
184. K. Masubuchi and D.C. Martin: A consideration of grain boundary sliding during welding, Weld. J., 41(8), 1962, pp. 375-382.
185. Y.A. Smolyanitskii: Izvest. Vuz. Chern. Met. 2, 1960, pp.124-129.
186. N.F. Gittos, and M.H. Scott: Heat Affected Zone Cracking of Al-Mg-Si Alloys, Weld. J., 60, 1981, pp. 95s
187. H.W. Kerr, and M. Kotoch: Investigation of Heat -Affected Zone Cracking of GMA Welds of Al-Mg-Si Alloys Using the Varestraint Test, Weld. J., vol. 66, 1987, pp.251s
188. J.C. Lippold, D.E. Harwig, S.C. Ernst, and T. Nelson: Development of a weldability test database WELDTEST report, 1989, Edison Welding Institute, Columbus, Ohio.
189. E.F. Nippes, W.F. Savage, and G. Grotke: Further studies of the hot ductility of high-temperature alloys, Welding Research Council Bulletin No.33, 1957.
190. C.H. Kreischer: A critical analysis of the weld heat-affected zone hot ductility test, Weld. J., vol.42, No.2, 1963, pp.49s-59s.
191. B. Weiss, B.E. Grotke, and R.Stickler: Physical Metallurgy of Hot Ductility Testing, Weld. J., vol.49, No.10, 1970,pp.471s-487s.
192. C.S. Williams: Steel strength and ductility response to arc welding tehermal cycles, Weld. J., vol. 42, No. 1, 1963, pp.1s-8s.
193. W.A. Owczarski, D.S. Duvall, and C.P. Sullivan: A model for heat-affected zone cracking in nickel base superalloys, Weld. J., vol. 45, No. 4, 1966, pp.145s-155s.
194. W. Yeniscavich: A correlation of Ni-Cr-Fe alloy weld metal fissuring with hot ductility behavior, Weld. J., vol. 45, No. 8, 1966, pp.334s-356s.
195. Y.Arata, K. Terai, H.Nagai, S. Shimizu, and T. Aota: Fundamental studies on electron beam welding of heat resistant superalloys for nuclear plants-Report II. Trans. JWRI, 6(1), 1977, pp.69-79.
196. C.D. Lundin, C.Y.P. Qiao, T.P.S. Gill and G.M. Goodwin: Hot Ductility and Hot Cracking Behavior of Modified 316 Stainless Steels Designed for High-Temperature Service, Weld. J., 1993, pp. 189s-200s.
197. J.R. Donati, and G. Zacharie: Evaluation of tendency toward hot crack in the welding heat-affected zone of austenitic 18-10 stainless steels, Revue de Metallurgie, 71(12), 1974, pp.905-915.