跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉丁瑋
Ting-Wei Yeh
論文名稱: 光學鍍膜在藍綠光發光二極體上的應用
The Application of Optical Coatings to Blue/Green Light Emitting Diodes
指導教授: 紀國鐘
Gou-Chung Chi
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 89
語文別: 中文
論文頁數: 79
中文關鍵詞: 發光二極體抗反射層高反射層
外文關鍵詞: light emitting diode, antireflective layer
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 在發光二極體的正面,由於氮化鎵的折射率(約2.4)和空氣的折射率(1)差異相差很大,所以光經過折射率差異大的介質時,光穿透的比例將會減少,因此我們用二氧化矽、氮化矽、三氧化二鋁等材料作保護及抗氧化,並根據理論上薄膜干涉的計算及模擬,找出建設性干涉的膜厚,以提昇發光二極體的發光強度,並對沒有鍍抗反射層的發光二極體作光強度上的比較。
    在發光二極體的背面,為了避免有光從元件的背面耗損,因此鍍上金、銀、鋁作背面金屬反射鏡,以及用二氧化矽及二氧化鈦折射率的差異,鍍成多層膜的高反射鏡(經理論計算反射率可高達99%以上),並對鍍上金屬膜、多層膜的高反射鏡及一般製程的發光二極體作光強度及輸出功率的比較。



    On topside of LEDs, the difference of refractive index between GaN (about 2.4) and air (1) is large, so the percentage of transmission is lowered. SiO2, Al2O3, SiNX is coated on the topside of InxGa1-xN/GaN LEDs as passivation and/or antireflective layer. According to the theory of interference, it can be suggest that the thickness of thin film with constructive interference will achieve the purpose of improving emissive intensity. And the intensity of LEDs coated with passivation and/or antireflective layer compared with that of non-coated LEDs will be discussed.
    For the purpose of preventing optical absorption at interface between the backside of LED and lead frame, the bottom side of substrate is coated with Au, Ag, Al, respectively, as metal reflectors. In addition, periodic stacked multiple layers of TiO2 and SiO2 are used as high reflector (above 99% form theoretical calculation) due to the large difference of refractive index between them. The comparison of luminous intensity (output power) between LEDs coated with metal or dielectric reflectors and non-coated LEDs will be discussed in this article.

    Contents Abstract (in Chinese) i Abstract (in English) iii Acknowledgement v Contents I Figures Captions III Table Captions VII Chapter 1. Introduction 1.1 The Background of blue/green GaN LED 1 1.2 Overview of this Dissertation 3 Chapter 2. Theoretical Calculation and Simulation 2.1 Introduction 4 2.2 Theoretical Calculation 8 2.2.1 Theory of Multilayer Films 8 2.2.2 Antireflective Films 11 2.2.3 High-Reflectance Films 12 2.3 Simulation 15 Chapter 3. Experimental Procedure 3.1 LED Fabrication 19 3.1.1 Equipment 19 3.1.2 Epitaxy 23 3.1.3 LED Process 24 3.2 Antireflective Coatings Applied to Blue LED Devices 25 3.3 High Reflective Coatings Applied to Blue LED Devices 27 Chapter 4. Results and Discussion 4.1 Measurement of Reflectance and Transmittance 29 4.1.1 Transmittance of Antireflective layers 29 4.1.2 Reflectance of High Reflective Layers 30 4.2 Comparison of Output Intensity of Coated and Non-coated LED Devices 32 4.2.1 Antireflective Layers Coated LEDs 32 4.2.2 High Reflective Layers Coated LEDs 34 Chapter 5. Conclusions and Future Work 5.1Conclusion 40 5.2 Future Work 41 Reference 42

    1. Grant R. Fowles, “Introduction to Modern Optices”, second edition, p.96-100.
    2. Pochi Yeh, “Optical Waves in Layered Media”, p.106-108.
    3. Stan Gage, Dave Evans, Mark Hodapp, Hans Sorensen, Richard Jamison, Bob Krause, ”Ptoelectronics/ Fiber-Optices Applications Manual”, p.2.1-2.3.
    4. Hadis Morkoç, “Nitride Semiconductors and Devices”.
    5. G. M. Laws, E. C. Larkins, Harrison, C. Molloy, D. Somerford, “Improved refractive index formulas for the AlxGa1-xN and InyGa1-yN alloys” J. Appl. Phys. 89, 1108-1115(2001)
    6. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang and C. C. Liu, “High t ransparency Ni/Au ohmic contacts to p-type GaN”, Appl. Phys. Lett. Vol.74 (1999)
    7. “薄膜光學與鍍膜技術”,李正中 編著, 藝軒圖書出版社, 1999年12 月, 第一版, p.135-136.
    8. T. Someya and Y. Arakawa,”Highly reflective GaN/Al0.34Ga0.66N quarter-wave reflectors grown by metal organic chemical vapor deposition”, Appl. Phys. Lett. 73, 3653-3655(1998)
    9. H. M. Ng, T. D. Moustakas, S. N. G. Chu, ”High reflectivity and broad bandwidth Al/GaN distributed Bragg reflectors grown by molecular-beam epitaxy”, Appl. Phys. Lett. 76, 2818-2820(2000)
    10. Shuji Nakamura and Shigefusa F. Chichibu, “Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes”.
    11. R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, Jr., C. Tarn, and M. Schurman,” Inductively coupled plasma etching of GaN”, Appl. Phys. Lett. Vol.69, 1119 (1996)
    12. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, C. M. Chang, and W. C. Hung, “Inductively coupled plasma etching of GaN using Cl2/Ar and Cl2/N2 gases”, J. Appl. Phys. Vol.85, 1970 (1999)
    13. M. E. Lin, Z. Ma, Y. F. Huang, Z. F. Fan, L. H. Allen, and H. Morkoc, ”Low-resistance ohmic contacts on wide band-gap GaN”, Appl. Phys. Lett. Vol.64, 1003 (1994)
    14. Z. F. Fan, S. N. Mmohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, “Very low resistance multilayer ohmic contact to n-type GaN”, Appl. Phys. Lett. Vol.68, 1672 (1996)
    15. C. B. Vartuli, J. D. Mackenzie, J. W. Lee, C. R. Abernathy, S. J. Pearton, and R. J. Shul, ”Cl2/Ar and CH4/H2/Ar dry etching of III-V nitrides”, J. Appl. Phys. Vol.80, 3705 (1996)
    16. R. J. Shul, G. B. McClellan, S. J. Pearton, C. R. Abernathy, C. Constantine, and C. Barrat, “Comparison of dry etch techniques for GaN”, Electron Lett. Vol.32, 1408 (1996)
    17. S. A. Smith, C. A. Wolden, M. D. Bbremser, A. D. Hanser, R. F. Davis, and W. V. Lampert, “High rate and selective etching of GaN, AlGaN, and AlN using an inductively coupled plasma”, Appl. Phys. Lett. Vol.71, 3631 (1997)
    18.許進恭, “以有機金屬氣相磊晶法成長氮化物半導體及藍色發光二極體”, 國立成功大學博士論文, 中華民國八十八年五月.
    19. T. Peng and J. Piprek, Electrn. Lett.32, 2285 (1996)
    20. M. M. Y. Leung, A. B. Djurisic, and E. H. Li, “Refractive index of InGaN/GaN quantum well”, J. Appl. Phys. Vol.84,6312 (1998)
    21. M. D. McCluskey, L. T. Romano, B. S. Krusor, and D. P. Bour, “Phase separation in InGaN/GaN multiple quantum wells”, Appl. Phys. Lett. Vol.72, 1730 (1998)
    22. D.Doppalapudi, S. N. Basu, K.F. Ludwig, Jr., and T. D. Moustakas, “Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy”, J. Appl. Phys. Vol.84, 1389 (1998)
    23. D. Brunner, H. Angerer, E. Bustarret, F. Freudenburg, R. Höpler, R. Dimitrov. O. Ambacher, and M. Stutzman, “Optical constants of epitaxial AlGaN films and their temperature dependence”, J. Appl. Phys. Vol.82, 5090 (1997)

    QR CODE
    :::