| 研究生: |
高錢生 Chien-Sheng Kao |
|---|---|
| 論文名稱: | Nucleation and Growth Dynamics of Hexagonal Boron Nitride Grown through Plasma-enhanced Chemical Vapor Deposition |
| 指導教授: |
溫偉源
Wei-Yen Woon |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 氮化硼 、化學氣相沉積 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著石墨稀在2004年被機械剝離法製造出來,因此二維材料的研究和製造更加受到重視。其中六方氮化硼由於高能隙和高絕緣特性具有相當多的應用領域。在製造方面,由於可控制的高質量大面積生長,化學氣相沉積法最可能作為工業上的應用。而根據裂解前驅物的不同方式又分成熱化學氣相沉積和電漿輔助化學氣相沉積。
本實驗中比較了兩種生長方式,使用氨硼烷(AB)作為前驅物。使用XPS和 Raman spectrum 確認了生長出的薄膜是SP2 鍵結的六方氮化硼。使用OES 檢測出在電漿分解氨硼烷的成分中含有NH和N2 分子,證明了電漿具備更強的脫氫能力。根據時間變化的動力學實驗表明,CVD的生長較慢,以低成核率和高成長率達成覆蓋。PECVD相反,由於強的脫氫能力和電漿帶給分解物質的高能量,達成了以高成核率為主的覆蓋方式。相比於 thermal CVD,PECVD以10倍快的速率完成覆蓋。JMAK model 的結果也證明了PECVD較高的成核率。
雖然PECVD的成核較高,但是有觀察到成核的核點晶向很一致。從XPS和Raman的量測中可以確認PECVD 能形成和CVD相同結構的薄膜。結論,PECVD能降低生長時間,同時形成結構好的薄膜,對於生長hBN薄膜具有高潛力。
With the mechanical stripping of graphite in 2004, the research and fabrication of two-dimensional materials has gained more attention. The hexagonal boron nitride has a lot of applications due to its high energy gap and high insulation properties. In manufacturing, chemical vapor deposition is most likely to be used for industrial applications due to the controlled high quality and large area growth. Depending on the way of decomposing precursors, it is divided into thermal chemical vapor deposition and plasma-enhanced chemical vapor deposition.
In this experiment, two growth methods were compared, using ammonia borane (AB) as a precursor. The film grown was confirmed to be SP2-bonded hexagonal boron nitride using XPS and Raman spectrum. The OES detected the presence of NH and N2 molecules in the composition of the plasma decomposed ammonia-borane, which proved the enhanced dehydrogenation ability of the plasma. The time-dependent kinetic experiments show that CVD grows slowly and the coverage is achieved with low nucleation rate and high grain growth rate. On the other hand, PECVD achieves a high nucleation rate due to its strong dehydrogenation capability and the high energy of plasma decomposition material. Compared with thermal CVD, PECVD is able to achieve coverage at a rate 10 times faster. The results of JMAK model also prove the high nucleation rate of PECVD.
Although the nucleation of PECVD is higher, it is observed that the nuclei are uniformly crystalline. According to measurements of XPS and Raman, it can be confirmed that PECVD can form the same structure of films as CVD.
In conclusion, PECVD have a good potential for growing hBN films because it can reduce the growth time and is also can produce the high quality films.
Reference
[1] Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Kelly, P. J.; van den Brink, J. Phys. Rev. B 2007, 76073103
[2] Guo T, Nikolaev P, Rinzler AG, Tomanek D, Colbert DT, Smalley RE (1995) J Phys Chem 99:10694–10697
[3] Lei Liu et al., “Structural and electronic properties of h-BN” Physics Department, National University of Singapore, 2 Science Drive 3, 117542 Singapore
[4] L. Lindsay, D.A. Broido, Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride, Phys. Rev. B 84 (15) (2011) 155421.
[5] L. Lindsay, D.A. Broido, Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes, Phys. Rev. B 85 (3) (2012) 035436.
[6] H. O. Pierson, J. Compos. Mater., 1975, 9, 228–240
[7] Rozenberg, A. S.; Sinenko, Y. A.; Chukanov, N. V. J. Mater. Sci. 1993, 28 (20) 5528– 5533
[8] Yumeng Shi et al., “Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition” Nano Lett. 2010, 10, 10, 4134–4139
[9] Ki Kang Kim, “Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition” Nano Lett. 2012, 12, 1, 161–166
[10] Kim G,Jang AR,Jeong HY,Lee Z,Kang DJ和Shin HS 2013 Nano Lett。 13 1834–9
[11] B. Deb et al., “Boron nitride films synthesized by RF plasma CVD of borane–ammonia and nitrogen” Materials Chemistry and Physics 76 (2002) 130–136
[12] J. Vilcarromero et al., “Mechanical properties of boron nitride thin films obtained by RF-PECVD at low temperatures” Thin Solid Films 373 2000 273 Ž . ]276
[13] Yu, J., Qin, L., Hao, Y., Kuang, S., Bai, X., Chong, Y.M., Zhang, W., and Wang, E., Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultravio let light emission, and superhydrophobicity, ACS Nano, 2010, vol. 4, no. 1, pp. 414–422.
[14] I.S. Merenkov, M.L. Kosinova, E.N. Ermakova, E.A. Maksimovskii, Yu.M. Rumyantsev, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 11, pp. 1183–1189.
[15] Li Song et al., “Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers” Nano Lett. 2010, 10, 8, 3209–3215
[16] W. Auwärter, H. U. Suter, H. Sachdev and T. Greber, Chem. Mater. 2004, 16, 343-345
[17] G. Kim, A. R. Jang, H. Y. Jeong, Z. Lee, D. J. Kang and H. S. Shin, Nano Lett., 2013, 13, 1834–1839
[18] Ruiqi Zhao et al., “Controlling the orientations of h-BN during growth on transition metals by chemical vapor deposition”. Nanoscale, 2017,9, 3561-3567
[19] L.Liu et al., “Unusual role of epilayer – substrate interactions in determining orientational relations in van der Waals epitaxy,” 2014.
[20] Preobrajenski, A. B.; Vinogradov, A. S.; Martensson, N. Surf. Sci. 2005, 582 (1–3) 21– 30
[21] Lifeng Wang et al., “Growth and Etching of Monolayer Hexagonal Boron Nitride” Advanced Materials. September 2, 2015 Pages 4858-4864
[22] Y.Stehle et al., “Synthesis of Hexagonal Boron Nitride Monolayer: Control of Nucleation and Crystal Morphology” Chem. Mater., vol. 27, no. 23, pp. 8041–8047, 2015.
[23] Piran R. Kidambi et al., “In Situ Observations during Chemical Vapor Deposition of Hexagonal Boron Nitride on Polycrystalline Copper,” Chem. Mater., vol. 26, no. 22, pp. 6380–6392, 2014.
[24] Yijing Y. Stehle et al., “Anisotropic Etching of Hexagonal Boron Nitride and Graphene: Question of Edge Terminations” ACS Nano 2012, 6, 4, 3614–3623
[25] M. Konuma, Film Deposition by Plasma Techniques, Springer-Verlag, New York (1992)
[26] Babenko, V., Lane, G., Koos, A.A. et al. Time dependent decomposition of ammonia borane for the controlled production of 2D hexagonal boron nitride. Sci Rep 7, 14297 (2017).
[27] R.VGorbachev et al., “Hunting for Monolayer Boron Nitride : Optical and Raman Signatures,” no. 4, pp. 465–468, 2011.
[28] https://en.wikipedia.org/wiki/Emission_spectrum
[29] Laurent Souqui et al., “Plasma CVD of B–C–N thin films using triethylboron in argon–nitrogen plasma” J. Mater. Chem. C, 2020, 8, 4112
[30] Nicholas R. Glavin 𝑒𝑡 𝑎𝑙., Temporally and spatially resolved plasma spectroscopy in pulsed laser deposition of ultra-thin boron nitride films, J. Appl. Phys. 117, 165305 (2015); https://doi.org/10.1063/1.4919068
[31] Wenhua Zhang 𝑒𝑡 𝑎𝑙., First-Principles Thermodynamics of Graphene Growth on Cu Surfaces, J. Phys. Chem. C 2011, 115, 36, 17782–17787
[32] Pai Li 𝑒𝑡 𝑎𝑙., Dominant Kinetic Pathways of Graphene Growth in Chemical Vapor Deposition: The Role of Hydrogen, J. Phys. Chem. C 2017, 121, 25949−25955