| 研究生: |
呂宜倫 Yi-lun Lu |
|---|---|
| 論文名稱: |
混合型人工蜂群演算法之發展與應用 |
| 指導教授: |
莊德興
Der-shin Juang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 174 |
| 中文關鍵詞: | 人工蜂群演算法 、Nelder-Mead單純形法 、擾動機制 、混合型啟發式搜尋法 |
| 外文關鍵詞: | Artificial bee colony algorithm, Nelder-Mead simplex method, Perturbation, Hybrid heuristic search algorithm |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是針對連續變數、離散變數、混合變數之最佳化設計問題,提出以人工蜂群演算法(Artificial Bee Colony Algorithm, ABC)為基礎,結合Nelder-Mead單純形法(Nelder and Mead Simplex Method, NM)以及擾動機制(Perturbation, PT)的三種混合啟發式搜尋法,並分別稱為ABC-NM、ABC-PT以及ABC-NM-PT。ABC為一種全域的隨機搜尋法,藉由模擬蜜蜂覓食的過程,依靠個體之間的資訊交換進行平行式的搜索,進而找到問題的最佳解,然而ABC和其他高階啟發式搜尋法類似,在求解最佳化問題時存在著局部搜索能力差,接近最佳解時搜索效率下降,以及求解高度非線性問題時可能陷入局部最佳而使演化停滯等缺失。為了改善此缺失,本文採用NM演算法來取代ABC偵察蜂的階段的隨機產生個體機制,期望藉由NM優異的局部搜尋能力,改善ABC局部搜索能力較差之缺失並提高搜索效能。而考慮到NM反覆搜尋的機制可能導致搜尋時間增加,因此本研究另外引入PT擾動機制取代NM,希望達到降低適應值計算次數。最後,本文亦參考GCM的作法,以垃圾桶模型整合ABC、NM及PT,各取其優點來提升求解能力。在本文中,藉由不同類型的設計例,包含數學式及結構設計的問題,探討本文方法之優劣。比較算例之結果發現ABC-NM、ABC-PT與ABC-NM-PT在求解連續變數及離散變數之最佳化問題時都較ABC穩定,求解品質也較佳。
This article is devoted to the presentation of hybrid heuristic searching algorithms, namely ABC-NM, ABC-PT and ABC-NM-PT, for the optimum design with discrete, continuous and mixed variables. ABC (Artificial Bee Colony Algorithm) is a random search method that mimics the process of food foraging of honeybees. Honeybees pick the honey by each other and share the message of food sources, and then they find the best food source. However, ABC is similar to other meta-heuristic algorithms that have a poor search in local. When it becomes the best solution or is applied to complex problems, it will fall into local optimum and the algorithm stops. To overcome the drawback of the method, this report proposes the hybrid heuristic algorithm called ABC-NM which combined ABC and NM (Nelder-Mead Simplex Method) to raise the searching efficiency. The repeatedly search by NM may cost a lot of time, so this research replaces NM by PT (Perturbation) and when an aim to reduce the time of fitness calculating. At last, this research combines ABC, NM and PT by GCM (Garbage Can Model), namely ABC-NM-PT, for combining their advantages in order to enhance the searching ability. The design examples including mathematical problems and structure design demonstrate the effectiveness of the hybrid heuristic searching algorithms. The results show the ABC-NM-PT algorithm is reliable, and the solution quality in the literature is comparable to other optimal methods.
[1] Arora, J.S., (2002) “Method for Discrete Variable Structural Optimization,” In: Burns, S.A. (ed): Recent Advances in Optimal Structural Design, Technical Committee on Optimal Structural Design. ASCE, Reston, VA, pp. 1-35.
[2] Brajevic, I., Tuba, M., and Subotic, M., (2011) “Performance of the Improved Artificial Bee Colony Algorithm on Standard Engineering Constrained Problems.” International Journal of Mathematics and Computers in Simulation, Issue 2, Vol. 5, pp. 135-143.
[3] Bremicker, M., Papalambros, P. Y., and Loh, H. T., (1990) “Solution of Mixed-Discrete Structural Optimization Problem with a New Sequential Linearization Algorithm,” Computers and Structures, Vol. 37, No. 4, pp. 451-461.
[4] Cai, J., and Thierauf, G., (1993) “Discrete Optimization of Structures Using an Improved Penalty Function Method,” Engineering Optimization, Vol. 21, pp. 293-306.
[5] Camp, C., Pezeshk, S., and Cao, G., (1998) “Optimized Design of Two Dimensional Structures Using a Genetic Algorithm,” Journal of Structural Engineering, ASCE, Vol. 124, No. 5, pp. 551-559.
[6] Chai, S., and Sun, H. C., (1996) “A Relative Difference Quotient Algorithm for Discrete Optimization,” Structural Optimization, Vol. 12, No. 1, pp. 46-56.
[7] Coello, C. A., (2002) “Theoretical and Numerical Constraint-Handling Techniques Used with Evolutionary Algorithms: A Survey of the State of the Art,” Computer Methods in Applied Mechanics and Engineering, Vol. 191(12), pp. 1245-1287.
[8] Coello, C. A., (2000) “Use of a Self-Adaptive Penalty Approach for Engineering Optimization Problems,” Comput. Ind., Vol. 41(2), pp. 113-127.
[9] Coello, C. A., Rudnick, M., and Christiansen, A. D., (1994) “Using Genetic Algorithms for Optimal Design of Trusses,” Sixth International Conference on Tools with Artificial Intelligence, IEEE, pp.88-94.
[10] Davis, J. S., (1991) Handbook of Genetic Algorithm, Van Nostrand Reinhold.
[11] Deb, K., (2000) “An Efficient Constraint Handling Method for Genetic Algorithms,” Comput. Methods Appl. Mech. Engrg., Vol. 186, pp. 311-338.
[12] Deb, K., Gulati, S., and Chakrabarti, S., (1998) “Optimal Truss-Structure Design Using Real-Coded Genetic Algorithm,” Proceeding of the Third Annual Conference, University of Wisconsin, pp 479-486.
[13] De Jong, K. A., (1975) “An Analysis of the Behavior of a Class of genetic Adaptive Systems,” Ph.D. Dissertation, University of Michigan, Dissertation Abstracts International, Vol. 36, No. 10, 5140B. (University Microfilms No. 76-9381).
[14] Erbatur, F., Hasancebi, O., Tutuncu, I., and Kilic, H., (2000) “Optimal Design of Planar and Space Structures with Genetic Algorithms,” Computers and Structures, Vol. 75, pp. 209-224.
[15] Gao W., Liu S., and Huang L., (2012) “A Global Best Artificial Bee Colony Algorithm for Global Optimization,” Journal of Computational and Applied Mathematics, Vol. 236, pp. 2741-2753.
[16] Geem, Z. W., (2006) “Optimal Cost Design of Water Distribution Networks using Harmony Search,” Engineering Optimization, Vol. 38, No. 3, pp. 259-280.
[17] Geem, Z. W., Kim, J. H., and Loganathan, G. V., (2001) “A New Heuristic Optimization Algorithm: Harmony Search,” Simulation, Vol. 76(2), pp. 60-68.
[18] Groenwold, A. A., and Stander, N., (1997) “Optimal Discrete Sizing of Truss Structure Subject to Buckling Constraints,” Structural Optimization, Vol. 14, pp. 71.
[19] Groenwold, A. A., Stander, N., and Snyman, J. A., (1996) “A Pseudo Discrete Rounding Method for Structural Optimization,” Structural Optimization, Vol. 11, pp. 218-227.
[20] Groenwold, A. A., Stander, N., and Snyman, J. A., (1999) “A Regional Genetic Algorithms for the Discrete Optimal Design of Truss Structures,” International Journal for Numerical Methods in Engineering, Vol. 44, No.6, pp. 749-766.
[21] Hasancebi, O., (2008) “Adaptive Evolution Strategies in Structural Optimization: Enhancing Their Computational Performance with Applications to Large-scale Structures,” Comput Struct, Vol.87, pp.119–132.
[22] Holland, J. H., (1962) “Outline for a Logical Theory of Adaptive System,” Journal of the Association for Computing Machinery, Vol. 3, No. 3, pp. 297-314.
[23] Homaifar, A., Lai, S. H.-V., and Qi, X., (1994) “Constrained Optimization Via Genetic Algorithms,” Simulation, Vol. 62(4), pp. 242-254.
[24] Jivotovski, G., (2000) “A Gradient Based Heuristic Algorithm and its Application to Discrete Optimization of Bar Structures,” Structural and Multidisciplinary Optimization, Vol. 19, pp. 237-248.
[25] Karaboga, D., and Basturk, B., (2007), “Artificial bee colony (ABC) optimization Algorithm for Solving Constrained Optimization Problems,” In: LNCS: Advances in Soft Ccomputing: foundations of fuzzy logic and soft computing, Vol. 4529/2007. Springer, IFSA, pp. 789-798.
[26] Kavile, D., and Powell, G. H., (1971), “Efficient Reanalysis of Modified Structures,” Journal of the Structural Division, ASCE., Vol. 97, No. 1, pp. 377-392.
[27] Kennedy, J., and Eberhart, R. C., (1995) “Particle Swarm Optimization,” Proceedings of IEEE International Conference on Neural Networks, Vol. IV, pp. 1942-1948.
[28] Lee, D., and Wiswall, M., (2007) “A Parallel Implementation of the Simplex Function Minimization Routine,” Computational Economics, Vol. 30, pp. 171-187.
[29] Lee, K. S., and Geem, Z. W., (2004) “A New Meta-Heuristic Algorithm for Continuous Engineering Optimization: Harmony Search Theory and Practice,” Comput. Methods Appl. Mech. Engrg., Vol. 194, pp. 3902-3933.
[30] Lucic, P., and Teodorovic, D., (2001) “Bee system: Modeling Combinatorial Optimization Transportation Engineering Problems by Swarm Intelligence,” In: Preprints of the TRISTAN IV Triennial Symposium on Transportation Analysis, Sao Miguel, Azores Islands, Portugal, 441-445.
[31] Mahdavi, M., Fesanghary, M., and Damangir, E., (2006) “An Improved Harmony Search Algorithm for Solving Optimization Problems,” Applied Mathematics and Computation, Vol.188, pp.1567-1579.
[32] March, J., Cohen, M., and Olson, (1972) “A Garbage Can Model of Organization Choice,” Administrative Science Quarterly, pp. 1-25.
[33] Metropolis, N., Rosenbluth, A. W., Teller, A. H., and Teller, E., (1953) “Equation of State Calculation by Fast Computing Machines,” Journal of Chemical Physics, Vol. 21, No. 6, pp. 1087-1092.
[34] Michalewicz, Z., (1995) “Genetic Algorithms, Numerical Optimization, and Constraints,” In: L. Esheman (Ed.), Proceeding of the Sixth International Conference on Genetic Algorithms, Morgan Kauffman, San Mateo, pp.151-158.
[35] Nanakorn, P., and Meesomklin, K., (2001) “An Adaptive Penalty Function in Genetic Algorithms for Structural Design Optimization”, Computers and Structures, Vol. 79, pp. 2527-2539.
[36] Nelder, J. A., and Mead, R., (1965) “A Simplex Method for Function Minimization,” The Computer Journal, Vol. 7, pp. 308-313.Pedersen, P., (1973) “Optimal Joint Positions for Space Trusses,” Journal of the Structural Division, ASCE, Vol. 99, No. 12, pp. 2459-2475.
[37] Omkar, S.N., Senthilnath, J., Khandelwal, R., Narayana Naik, G., and Gopalakrishnan, S., (2011) “Artificial Bee Colony (ABC) for multi-objective design optimization of composite structures,” Applied Soft Computing, Vol. 11, pp. 489-499.
[38] Ponterosso, P., and Fox, D. S. J., (1999) “Heuristically Seeded Genetic Algorithms Applied to Truss Optimization,” Engineering with Computers, Vol. 15, pp. 345-355.
[39] Price K., and Storn R., (1995) “Differential Evolution-A simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces,” Technical report TR-95-012, International Computer Science Institute, Berkeley, CA.
[40] Price Kenneth V., (1999) “An Introduction to Differential Evolution,” In: Corne, D., Dorigo, M., Glover, F. (Eds.), New Ideas in Optimization, McGraw-Hill, London, pp. 79-108.
[41] Rajeev, S., and Krishnamoorthy, C. S., (1992) “Discrete Optimization of Structures Using Genetic Algorithms,” Journal of Structural Engineering, ASCE., Vol. 118, pp. 1233-1250.
[42] Ringertz, U. T., (1988) “On Methods for Discrete Structural Optimization,” Eng. Opt., Vol. 13, pp. 47-64.
[43] Salajegheh, E., and Vanderplaats, G. N., (1993) “Efficient Optimum Design of Structures with Discrete Design Variables,” Space Structures, Vol. 8, pp. 199-208.
[44] Salajegheh, E., and Salajegheh, J., (2002) “Optimum Design of Structures with Discrete Variables Using Higher Order Approximation,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, pp. 1395-1419.
[45] Sandgren, E., (1990) “Nonlinear Integer and Discrete Programming in Mechanical Design Optimization,” J. Mech. Des. ASME, Vol. 112, pp.223-229.
[46] Shi, Y., and Eberhart, R. C., (1998) “A Modified Particle Swarm Optimizer,” In: Proceedings of the International Congress on Evolutionary Computation, IEEE Service Center, Piscataway, NJ, pp. 69-73.
[47] Simon, H. A., (1960) “Some Further Notes On a Class of Skew Distribution Functions,” Information and Control, Vol. 3, pp. 80-88.
[48] Sonmez, M., (2011) “Artificial Bee Colony Algorithm for Optimization of Truss structure,” Applied Soft Computing, Vol. 11, pp. 2406-2418.
[49] Sonmez, M., (2011) “Discrete Optimum Design of Structures Using Artificial Bee Colony Algorithm,” Struct Multidisc Optim, Vol. 43(1), pp. 85-97.
[50] Sui, Y., and Lin, Y., (1987) “The Optimization of Beam Containing Structure with Discrete Cross Section and its Computer Implementation on Plane Frame Structure,” Chinese Journal of Computational Mechanism, Vol. 4, pp. 62-69.
[51] Sun, H. C., Chai, S., and Wang, Y. F., (1995) “Discrete Optimum Design of Structures,” Dalian University of Technology.
[52] Teodorovic, D. and Orco, M. D., (2005) “Bee Colony Optimization-A Comparative Learning Approach to Computer Transportation Problems,” In: Advanced or An IA Methods in Transportation, pp. 51-60.
[53] Teodorovic, D., (2009) “Bee Colony Optimization,” In: Lim, CP et al. (eds) Innovations in swarm intelligence, SCI 248. Springer, Heidelberg, pp. 39-60.
[54] Tong, W. H., and Liu, W. H., (2001) “An Optimization Procedure for Truss Structures with Discrete Design Variables and Dynamics Constrains,” Computers and Structures, Vol. 79, pp. 155-162.
[55] Walters, F., (1999) “Sequential Simplex Optimization an Update,” Analytical Letters, Vol. 32(2), pp. 193-212.
[56] Whitley, D., (1989) “The Genitor Algorithm and Seiection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best,” Proceeding of the Third International Conference on Genetic Algorithm, J. D. Schaffer, pp. 115-121, Morgon Kaufmann, San Mateo, California.
[57] Wu, S. J., and Chow, P. T., (1995) “Genetic Algorithms for Nonlinear Mixed Discrete-Integer Optimization Problems Via Meta-Genetic Parameter Optimization,” Engrg. Optim., Vol. 24, pp. 137-159.
[58] Wu, S. J., and Chow, P. T., (1995) “Integrated Discrete and Configuration Optimization of Trusses Using Genetic Algorithms,” Computers and Structures, Vol. 55, No. 4, pp.695-702.
[59] Wu, S. J., and Chow, P. T., (1995) “The Application of Genetic Algorithms to Discrete Optimization Problems,” Journal of the Chinese Society of Mechanical Engineers, Vol. 16, No. 6, pp. 587-598.
[60] 吳泳達 (2003),「離散拉格朗日法於結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢。
[61] 林俊榮 (2011.4),「以力法為分析工具之結構離散輕量化設計效率的探討」,碩士論文,國立中央大學土木工程研究所,中壢。
[62] 邱進東、郭信川 (2010.8),「智慧型垃圾桶決策之進化演算法於懸臂樑最佳化設計」,德林學報,第二十四期。
[63] 胡曉輝 (2002.4),「粒子群優化算法介紹」,<http://web.ics.purdue/hux/tutorials.shtml>。
[64] 莊玟珊 (2007),「PSO-SA混合搜尋法與其它結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢。
[65] 陳冠廷 (2011),「以整合力法為分析工具之結構離散輕量化設計效率的探討」,碩士論文,國立中央大學土木工程研究所,中壢。
[66] 張慰慈 (2003),「DLM-GA混合搜尋法於結構離散最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢。
[67] 藍志浩 (2005),「考慮動態反應束制及關連性離散變數之結構最佳化設計」,碩士論文,國立中央大學土木工程研究所,中壢。
[68] 鐘昀展 (2011),「PSO-DE混合式搜尋法應用於結構最佳化設計之研究」,碩士論文,國立中央大學土木工程研究所,中壢。