跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳建欽
Jian-cin Chen
論文名稱: 石英柱狀微結構之表面聲波感測器之研製與特性分析
Fabrication and Analysis of Micro-pillared Quartz SAW Sensors
指導教授: 洪銘聰
Ming-tsung Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 93
中文關鍵詞: 表面聲波微結構感測器微機電製程
外文關鍵詞: SAW, micro-structures, sensor, MEMS
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面聲波感測器元件由於靈敏度高、體積小、高可靠度等優勢,被運用在氣體感測器、液體感測器、溫度及濕度感測器上,近幾年也開始應用於生醫、生物檢測上。隨著樣品體積逐漸縮小,感測器的靈敏度必須提升。隨著微奈米製造技術的進步,微結構提供較多的感測表面積以提升元件性能。本文利用微機電(MEMS)製程技術設計與製作一具有柱狀微結構之表面聲波元件,量測其元件特性,探討微結構來提升其表面聲波感測效能的可行性。
    首先利用微影技術與乾蝕刻於石英基板上蝕刻出不同結構尺寸、數量與深度之微結構於感測區上,接著利用蒸鍍沉積金屬薄膜,經微影製程蝕刻出指叉電極,再利用舉離法在感測區上沉積鉻金屬薄膜當作負載。訊號量測使用高頻功率與雜訊量測系統,測量質量負載前與負載後其輸入電壓與輸出電壓跟頻率響應之關係,計算並繪出插入損失與頻率響應關係圖,探討在不同結構與蝕刻深度由質量負載造成中心頻率的偏移之結果。最後將實驗量測數據與模擬結果做比對分析,以期達到藉由模擬來預測實驗結果,減少實驗的次數來達到較佳的結構增加形態。
    由實驗量測結果顯示無論是增加微結構物數量或是增加蝕刻深度都能達到中心頻率偏移量上升的效果,而又以結構物週期變小所造成的效益較增加蝕刻深度來的優秀,此結果與簡化微結構的模擬所提供之結論是互相呼應的,因此由模擬來預測實驗趨勢是可行的。


    Due to the high sensitivity, small size and high reliability, surface acoustic wave (SAW) device has been used as a sensor in many fields, such as gas sensors, liquid sensors, temperature sensors, and humidity sensors. It is also used as biomedicine and biological sensors in recent years. In such applications, as the sample size reduces, the sensitivity of the sensor has to be improved. Incorporating micro/nano-structures into the sensors is a promising approach. The high surface-to-volume ratio of micro/nano-structures provides more surface area of sensing to improve the performance of the device. In this study, we use MEMS fabrication techniques to fabricate micro-pillars on the SAW device, characterize its performance, and study the impacts of micro-structures in improving the SAW sensor performance.
    First, we use photolithography and dry etching to fabricate micro-pillar arrays on the quartz substrate with different pillar diameters, lengths, and the array patterns. Then, a metal film is deposited and patterned to make the inter-digital transducers. Finally, chromium is deposited in the sensing area by lift-off as the mass loading material. An oscillating voltage is then apply to the SAW device, and the output voltage is measured by HF power measurement system. The insertion loss frequency response can be obtained. From the shift of the center frequency after loading, the mass of the loading can be determined. The experimental results is analyzed and compared with the simulation results.
    The experimental data show that either increasing the micro-structure density or deepening the micro-structure etching depth, the shift of center frequency will increase. In addition, increasing the micro-structure density is better than deepening the micro-structure etch depth. The result was consistent with the simplified numerical simulation.

    目錄 摘要 i Abstract ii 謝誌 iv 目錄 v 圖目錄 vii 表目錄 xii 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 4 1.3 文獻回顧 6 1.4 論文架構 7 第2章 理論基礎 8 2.1 壓電理論 8 2.1.1 壓電效應(piezoelectric effect) 8 2.1.2 壓電材料 10 2.1.3 機電耦合係數(electromechanical coupling factor,Ke2) 11 2.2 指叉電極(Interdigital Transducers, IDTs) 11 2.2.1 基板材料選擇 13 2.2.2 指叉電極指寬 13 2.3 表面聲波感測器 14 2.3.1 插入損失(Insertion Loss, IL) 14 2.3.2 質量負載效應(Mass Load Effect) 15 第3章 研究方法 17 3.1 研究流程架構 17 3.2 模擬方法 17 3.2.1 統御方程式 17 3.2.2 模擬外形及參數 18 3.2.3 邊界條件 20 3.3 分析方法 21 3.4 元件製作與量測 24 3.4.1 實驗用之試片 30 3.4.2 試片切割 31 3.4.3 清洗試片 31 3.4.4 試片烘烤 31 3.4.5 結構物微影製程 32 3.4.6 結構物之蝕刻 33 3.4.7 蒸鍍沉積金屬薄膜 33 3.4.8 指叉電極微影製程 34 3.4.9 金屬薄膜之蝕刻 35 3.4.10 試片第一次量測 35 3.4.11 蒸鍍負載之金屬薄膜 38 3.4.12 試片第二次量測 39 第4章 結果與討論 42 4.1 量測數據整理 42 4.2 模擬分析結果 56 4.3 模擬分析與實驗量測對照 60 4.3.1 固定週期下改變深度造成的影響 60 4.3.2 增加表面積與頻率偏移量關係 64 第5章 結論與未來展望 69 5.1 結論 69 5.2 未來展望 69 參考文獻 71

    [1] L. Rayleigh, ”On waves propagation along the plane surface of an elastic solid”, Proc. London Math. Soc., vol.17, pp.4-11, 1885.
    [2] T. T. Wu, Introduction to Surface Acoustic Wave, R.O.C. Taiwan, 2003.
    [3] B. Drafts, “acoustic wave technology sensors”, Ieee Transactions on Microwave Theory and Techniques, pp. 795-802, 2001.
    [4] TXC Corporation, “Technical Terminology”, R.O.C. Taiwan. 1983.
    [5] TriQuint corporation, “Smallest Dual-Band power Amplifier Solution for 3G and 4G Smartphones”, 2012.
    [6] Chevallier E., Scorsone E., Bergonzo P. New sensitive coating based on modified diamond nanoparticles for chemical SAW sensors. Sensors and Actuators, Vol.154 ,pp. 238–244, 2011.
    [7] M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran , C. M. de Sterke and N. A. P. Nicorovici, “Microstructured Polymer Optical Fibre”, Optics Express, Vol. 9, No. 7, pp.319-327, 2001.
    [8] 葉建宏, 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析, 碩士論文, 國立中央大學機械工程所, 中華民國一百年七月.
    [9] H. W. Chang, Y. J. Jou, S. Z. Tasi, H. P. Shiu, J. S. Shr,, “Preparation and Application of Homemade Surface Acoustic Wave Gas Sensors”, Chemistry (The Chinese Chemical Society, Taipei), pp. 487-498, R.O.C. Taiwan, 2007.
    [10] G. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung”, Zeitschrift für Physik, pp.206-222, 1959.
    [11] J. M. Stephen , C. F. Gregory and D. S. Stephen, , “Dynamics and Response of Polymer-Coated Surface Acoustic Wave Devices: Effect of Viscoelastic Properties and Film Resonance”, Analytical Chemistry, pp.2201-2219, 1994.
    [12] L. Wu, J. Y. Shen and Y. T. Shen, “Surface Acoustic Wave Based Chemical Sensors”, Chemistry, R.O.C. Taiwan, pp. 279-286, 2001.
    [13] K. Mitsakakis, A. Tsortos, J. Kondoh, and E. Gizeli, “Parametric Study of SH-SAW Device Response to Various Types of Surface Perturbations”, Sensors and Actuators B, pp. 408-416, 2009.
    [14] Jr. A. J. Slobodnik, “Surface acoustic waves and SAW materials”, Proceedings of the IEEE, pp. 581 – 595, 1976.
    [15] B. Drafts, “Acoustic Wave Technology Sensor”, IEEE Transactions on Microwave Theory and Techniques, pp. 795-802, 2001.
    [16] K. R. Williams, K. Gupta and M. Wasilik, ”Etch Rates for Micromachining Processing-PartП”, Journal of Microelectromechanical system, pp. 761-778, 2003.
    [17] I. D. Avramov, “Design of Rayleigh SAW Resonators for Applications as Gas Sensors in Highly Reactive Chemical Environments”, IEEE International Frequency Control Symposium and Exposition, pp. 381 – 388, 2006.
    [18] M. Benetti, , D. Cannata, F. Di Pietrantonio, C. Marchiori, P. Persichetti and E. Verona, “Pressure Sensor based on Surface Acoustic Wave Resonators”, IEEE Sensors, pp. 1024 – 1027, 2008.
    [19] M. Hofer, N.Finger, G. Kovacs, J. Sch¨oberl, S. Zaglmayr, U. Langer, and R. Lerch, "Finite Element Simulation of Wave Propagation in Periodic Piezoelectric SAW Structures", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pp. 1192-1201, 2006.
    [20] K. N. Rama, B. N. Harshal and P. Roy, “Simulation of One-Port SAW Resonator using COMSOL Multiphysics”, Proceeding of the COMSOL Users Conference, Bangalore, pp. 1-5, 2006.
    [21] N. Jamil , A. N. Nordin, I. Voiculescu and M. Mel, “Simulation of Surface and Bulk Acoustic Wave MEMS Biosensors”, Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Seville, Spain, pp. 1-5. 2010.
    [22] W. G. Julian, K. V. Vijay and O. A. Osama, “Microsensor MEMS and Smart Devices”, Wiley, 2001.
    [23] B.D. Stephen, “Acoustic wave sensors:theory, design, and physico-chemical applications”, Elsevier, 1996.
    [24] Jr. A. J. Slobodnik, “Surface acoustic waves and SAW materials”, Proceedings of the IEEE , pp. 581 – 595, 1976.
    [25] Y. C. Hsu and N. B. Le, “Coupling Coefficient Determination Based on Simulation and Experiment for ST-Cut Quartz SAW Delay-Line Response”, Microsyst Technol, pp. 615-622, 2008.
    [26] H. Matthews, “Surface Wave Filters Design, Construction, and Use”, John Wiley & sons, pp. 20, 1979
    [27] A. J. Slobodnik, J. R. Thomas, L. Szabo and K. R. Laker, Proc. IEEE 67 129,1979.
    [28] C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications”,Academic Press, INC, pp. 108-113, 1989.
    [29] M. Hofer, N.Finger, G. Kovacs, J. Sch¨oberl, S. Zaglmayr, U. Langer and R. Lerch, “Finite Element Simulation of Wave Propagation in Periodic Piezoelectric SAW Structures”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pp. 1192-1201, 2006.
    [30] G. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung”, Zeitschrift für Physik, pp.206-222, 1959.
    [31] D. H. Wu, and H. H. Chen, “Application of Taguchi Robust Design Method to SAW Mass Sensing Device”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pp. 2403-2410, 2005.
    [32] W. G. Julian, K. V. Vijay and O. A. Osama, “Microsensor MEMS and Smart Devices”, Wiley, 2001.
    [33] K. Mitsakakis, A. Tsortos, J. Kondoh, and E. Gizeli, “Parametric Study of SH-SAW Device Response to Various Types of Surface Perturbations”, Sensors and Actuators B, pp. 408-416, 2009.

    QR CODE
    :::