| 研究生: |
李育峰 Yu-feng Lee |
|---|---|
| 論文名稱: |
利用粒子群優演算法改善模糊知識之整合 Improving Fuzzy Knowledge Integration with Particle Swarm Optimization |
| 指導教授: |
楊鎮華
Stephen J.H. Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系在職專班 Executive Master of Computer Science & Information Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 粒子群智慧 、演化式計算 、粒子群優演算法 、模糊規則 、知識整合 |
| 外文關鍵詞: | swarm intelligence, evolutionary computing, particle swarm optimization, fuzzy rule, knowledge integration |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此論文中,我們提出了一基於粒子群優演算法的模糊知識整合方法,可用於多個模糊知識庫的融合之用。本研究將可增進整合後知識庫的準確率及降低其規則複雜度。所提出的方法包含了兩階段程序:一是演化式的模糊知識編碼,二是基於粒子群優演算法的知識融合階段。在編碼階段中,每個模糊規則集及其相對應的歸屬函數將被編碼置於同一字串並構成初始的知識粒子群。融合階段中,將利用粒子群優演算法來探尋出最佳化或接近最佳化的模糊規則與其歸屬函數。我們將其應用於學生程式學習樣式診斷及適性化學習服務組合這兩個領域,並展示出我們所提出的知識整合方法的效率。實驗的結果可顯示出我們的系統能有效的提高整合後的知識庫規則準確率及可降低其規則複雜度。將有助於知識推論及決策制定之有效進行。
This paper presents an approach to integrate multiple fuzzy knowledge bases for increasing the accuracy and decreasing the complexity of the integrated knowledge base. The proposed approach consists of two phases: PSO-based fuzzy knowledge encoding, and PSO-based fuzzy knowledge fusion. In the encoding phase, the fuzzy rule sets and fuzzy sets with its corresponding membership functions are encoded as a string and are put together in the initial knowledge population. In the fusion phase, the particle swarm algorithm is used to explore the fuzzy rule sets, fuzzy sets and membership functions to its optimal or the approximately optimal extent. Two application domains, including diagnosis on student’s program learning style and situational learning services composition, were used to demonstrate the performance of the proposed knowledge integration approach. Experiment results revealed that our approach will effectively increase the accuracy and decrease the complexity of integrated knowledge base. The results of this study could extend the effectiveness of knowledge inference and decision making.
Abdennadher, S. & Fruhwirth, T. (2004). Integration and Optimization of Rule-Based Constraint Solvers. Lecture Notes in Computer Science, Springer, 2004(3018), 198-213.
Achiche, S. , Baron, L. & Balazinski, M. (2003). Real/Binary-Like Coded Genetic Algorithm to Automatically Generate Fuzzy Knowledge Bases. International Conference on Control and Automation, 793-803.
Alonso, J. M. , Magdalena, L. & Guillaume, S. (2004). KBCT: a knowledge extraction and representation tool for fuzzy logic based systems. IEEE International Conference on Fuzzy Systems, 2, 989-994.
Andrew, H. W. , Stashuk, D. W. & Tizhoosh, H. R. (2007). Fuzzy Classification Using Pattern Discovery. IEEE Transactions on Fuzzy Systems, 15(5), 772-783.
Angus, F. M. H. , Shin, B. H. , Evan, Y. F. L. , & Stephen J. H. Y. (2008). Improving End-User Programming with Situational Mashups in Web 2. 0 Environment. The Fourth IEEE International Symposium on Service-Oriented System Engineering(SOSE 2008), Taiwan.
Bargiela, A. & Pedrycz, W. (2003). Recursive information granulation: aggregation and interpretation issues. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 33(1), 96-112.
Bellini, A. , Filippetti, F. , Tassoni, C. & Capolino, G. A. (2008). Advances in Diagnostic Techniques for Induction Machines. IEEE Transactions on Industrial Electronics, 55(12), 4109-4126.
Bland, J. A. (2001). Optimal structural design by ant colony optimization, Engineering Optimization, 4(33), 425-443.
Bugarin, A. , Carinena, P. , Delgado, M. F. & Barro, S. (1996). Petri net representation of fuzzy reasoning under incomplete information. 26th International Symposium on Multiple-Valued Logic, 172-177.
Celikyilmaz, A. & Burhan T. I. (2008). Enhanced Fuzzy System Models With Improved Fuzzy Clustering Algorithm. IEEE Transactions on Fuzzy Systems, 16(3), 779-794.
Chen, D. , & Zhao, C. (2009). Data-driven fuzzy clustering based on maximum entropy principle and PSO, Expert Systems with Application, 36(1), 625-633.
Chen, S. M. & Bai, S. M. (2009). Learning barriers diagnosis based on fuzzy rules for adaptive learning systems. Expert Systems with Applications, In Press, Corrected Proof.
Chowdhury, S. R. S. & Hiranmay, S. (2008). A High-Performance FPGA-Based Fuzzy Processor Architecture for Medical Diagnosis. IEEE Micro, 28(5), 38-52.
Coello, C. A. & Becerra, R. L. (2004). Efficient evolutionary optimization through the use of a cultural algorithm. Engineering Optimization. 2(36), 219-236.
Cordon, O. & Herrera, F. (1997). A three-stage evolutionary process for learning descriptive and approximative fuzzy logic controller knowledge bases from examples. Int. J. Approxi. Reas. , 4(17), 369-407.
Echauz, J. R. , & Vachtsevanos, G. J. (1995). Fuzzy Grading System. IEEE Transactions on Education, 2(38), 158-165.
Fukuda, T. & Kubota, N. (1999). An intelligent robotic system based on a fuzzy approach. Proceedings of the IEEE, 87(9), 1448-1470.
Galindo, J. , Urrutia, A. & Piattini, M. (2004). Representation of fuzzy knowledge in relational databases. 15th International Workshop on Database and Expert Systems Applications, 917-921.
Ge, H. W. , Sun, L. , Liang, Y. C. , & Qian, F. (2008). An Effective PSO and AIS-Based Hybrid Intelligent Algorithm for Job-Shop Scheduling. IEEE Transactions on Systems, Man and Cybernetics, Part A, 38(2), 358-368.
Hansong X. & Zu, J.W. (2007). A New Constrained Multiobjective Optimization Algorithm Based on Artificial Immune Systems. International Conference on Mechatronics and Automation, 3122-3127.
Harman M. & Jones B. F. (2001). Search-based software engineering. Information and Software Technology, 43, 833-839.
Held, C. M. , Heiss, J. E. , Estevez, P. A. , Perez, C. A. , Garrido, M. , Algarin, C. & Peirano, P. (2006). Extracting Fuzzy Rules From Polysomnographic Recordings for Infant Sleep Classification. IEEE Transactions on Biomedical Engineering, 53(10), 1954-1962.
Hiam, H. L. & Bin, Q. (2001). Fuzzy logic traffic control in broadband communication networks. IEEE Transactions on Fuzzy Systems, 1, 99-102.
Hopgood, A. A. & Hirst, A. J. (2007). Keeping a distance-education course current through eLearning and contextual assessment. IEEE Transactions on Education, 1(50), 85-96.
Hwang, H. S. (1999). Automatic design of fuzzy rule base for modeling and control using evolutionary programming. IEE Proceedings – Control Theory Applications, 146(1), 9–16.
Ishibuchi, H. & Yamamoto, T. (2004). Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets and Systems, 1(141), 59-88.
Juang, C. -F. , & Wang, C. -Y. (2009). A self-generating fuzzy system with ant and particle swarm cooperative optimization, Expert Systems with Application, 36(3), 5362-5370.
Jun, Z. , Wei, L. , Yiduo, L. & Jiatao, J. (2008). Fuzzy knowledge representation for fuzzy systems based on ontology and RDF on the Semantic Web. International Conference on Information and Automation, 1101-1105.
Kephart, J. O. (1994). A biologically inspired immune system for computers. The Fourth International Workshop on the Synthesis and Simlation of Living Systems, 130-139.
Kennedy, J. , & Eberhart, R. C. (1995). Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks. 4. 1942-1948.
Kennedy, J. , & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Piscataway, NJ. 4104-4108.
Klawonn, F. & Keller, A. (1995). Fuzzy clustering with evolutionary algorithms. International Conference on Neural Networks, Perth, Australia, 1942-1948.
Kolman, E. & Margaliot, M. (2007). Knowledge Extraction From Neural Networks Using the All-Permutations Fuzzy Rule Base: The LED Display Recognition Problem. IEEE Transactions on Neural Networks, 18(3), 925-931.
Lekova, A. , Mikhailov, L. , Boyadjiev, D. , & Nabout, A. (1998). Redundant fuzzy rules exclusion by genetic algorithms. Fuzzy Sets and Systems, 1-3(100), 235-243.
Liang, J. J. , Qin, A. K. , Suganthan, P. N. & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 3(10), 281-295.
Liping, L. , Shenoy, C. & Shenoy, P. P. (2006). Knowledge representation and integration for portfolio evaluation using linear belief functions. IEEE Transactions on Systems, Man and Cybernetics, Part A. 4(36), 774-785.
Lotfi, A. Z. (1965). Fuzzy sets. Information and Control, 8 (3), 338–353.
Marin, N. , Molina, C. , Serrano, J. M. & Vila, M. A. (2008). A Complexity Guided Algorithm for Association Rule Extraction on Fuzzy DataCubes. IEEE Transactions on Fuzzy Systems, 16(3), 693-714.
Polat, K. & Güneş, S. (2009). A new method to forecast of Escherichia coli promoter gene sequences: Integrating feature selection and Fuzzy-AIRS classifier system. Expert Systems with Applications, 36(1), 57-64.
Raguraman, S.M. , Tamilselvi, D. & Shivakumar, N. (2009). Mobile robot navigation using Fuzzy logic controller. International Conference on Control, Automation, Communication and Energy Conservation, 1-5.
Salman, A. , Ahmad, I. & Sabah, A. M. (2002). Particle swarm optimization for task assignment problem. Microprocessors and Microsystems, 26(8), 363-371.
Sarker, R. A. & Newton, C. S. (2007). Optimization modelling. CRC Press Taylor & Francis Group, Boca Raton London New York.
Wang, C. H. , Hong, T. P. , & Tseng, S. S. (1998). Integrating fuzzy knowledge by genetic algorithms. IEEE Transactions on Evolutionary Computation, 2(4), 138-149.
Wang, C. H. , Hong, T. P. , Chang, M. B. , & Tseng, S. S. (2000). A coverage-based genetic knowledge-integration strategy. Expert Systems with Application, 19(1), 9-17.
Wang T. C. , & Lin, Y. L. (2009). Applying the consistent fuzzy preference relations to select merger strategy for commercial banks in new financial environments. Expert Systems with Applications, 36(3), 7019-7026.
Wang W. P. (2009). Evaluating new product development performance by fuzzy linguistic computing. Expert Systems with Applications, 36(6), 9759-9766.
Yang, S. J. H. , Tsai, J. J. P. , & Chen, C. C. (2003). Fuzzy Rule Base Systems Verification Using High Level Petri Nets, IEEE Transactions on Knowledge and Data Engineering, 15(2), 457-473.
Yang, S. J. H. (2006). Context Aware Ubiquitous Learning Environments for Peer-to-Peer Collaborative Learning. Educational Technology & Society, 9(1), 188-201.
Zeng, X. J. , & Singh, M. G. (1996). Approximation accuracy analysis of fuzzy systems as functionapproximators. IEEE Transactions on Fuzzy Systems, 4(1), 44-63.
Zhao, L. & Yang, Y. (2009). PSO-based single multiplicative neuron model for time series prediction. Expert Systems with Applications, 36(2), 2805-2812.
Zitzler, E. , Laumanns, M. , & Bleuler, S. (2004). A tutorial on evolutionary multiobjective optimization. Proceedings of the Workshop on Multiple Objective Metaheuristics.