| 研究生: |
廖柏翔 Po-hsiang Liao |
|---|---|
| 論文名稱: |
高濃度矽鍺量子點 / 矽奈米柱異質結構光偵測器之研製與光電性分析 Fabrication and Characterization of Silicon-Germanium Quantum Dot/Silicon Nanopillar Heterostructured Visible to Near Infrared Photodetectors |
| 指導教授: |
李佩雯
Pei-wen Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 矽鍺量子點 、矽奈米柱 、光偵測器 、高濃度矽鍺 、選擇性沉積 |
| 外文關鍵詞: | Silicon-Germanium Quantum Dot, Si Nanopillar, Photodetector, High Germanium Content Silicon Germanium, Selective Deposition |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了與光積體電路整合並利用低廉的價格製造出適用於可見光、紅外光之光偵測器,一般來說,需要在單晶矽上沉積一層足夠厚且高品質的鍺來實現鍺光偵測器。然而由於矽與鍺的晶格不匹配 (4.2%),本論文利用低溫氣相沉積方式成功地將30奈米的高濃度矽鍺選擇性沉積在10到20奈米的矽奈米柱上。並利用此結構製作成可見光光偵測器以驗證其特性。
藉由光電性量測得知此矽鍺/矽光電二極體的截止波長為780奈米,暗電流只有10-14安培,最大光電流/暗電流比可以高達4個數量級。此現象表示藉由小面積沉積的方式確實可以得到好的高濃度矽鍺與矽之界面。波長為1500奈米時,在入射光功率只有10微瓦的情況下,元件的光暗電流比依然可高達30倍。由此可知高濃度矽鍺量子點/矽奈米柱光偵測器亦有可能應用於光纖通訊。實驗中也發現到,被矽鍺/矽奈米柱界面所侷限的光電洞會造成轉換電壓的位移,使得電流最低點並非在原點的位置。轉換電壓位移的量與光電流大小有強烈的相依性呈指數關係。因此當元件光響應不明顯時,轉換電壓也提供了另一種判斷截止波長的方法。
For optoelectronic integrated circuit applications, a low-cost, reasonable-performance visible to infrared photodetectors are one of the key component devices. This makes the growth of high-quality, sufficient-quantity Ge on the Si platform in a strong demand. However, it is of challenge in any atomic-layer deposition approach because of the large lattice mismatch (4.2%) between Ge and Si. In this thesis, we selectively deposit high-concentrated SiGe nonocrystals on 10-20-nm-wide silicon nanopillars array in low-pressure chemical vapor deposition technique and demonstrated a significant performance improvement of indium tin oxide (ITO)/Si0.3Ge0.7 quantum dots (QDs)/Si pillar metal/semiconductor (M/S) photodiodes in the dark current reduction and photoresponsivity enhancement for visible to near infrared photodetection.
The Si0.3Ge0.7 QDs/Si pillar MS photodiodes exhibit a low dark current of 10-14 A and a photocurrent enhancement of 104, 103 and 30 at the wavelength of 300-800, 1160 and 1500 nm, respectively, whereas no current gain is observed in controlled Si pillars-only (that is, no SiGe QDs) MS diodes. The power-dependent photocurrent analysis shows that the studied Si0.3Ge0.7 QD/Si pillar MS photodiodes have good linearity for incident light power up to 1 mW. A schematic energy band diagram is presented to explain the photo current enhancement in the Si0.3Ge0.7 QDs/Si pillar structure.
[1] F. Fixe et al., “An on-chip thin film photodetector for the quantification of DNA probe and targets in microarrays,” Nucleic Acids Research, vol. 32 (9), e70, 2004.
[2] S. Luryi et al., “New infrared detector on a silicon chip,” IEEE Transactions on Electron Devices, vol. 31 (9), p. 1135, 1984.
[3] B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communication,” IEEE Journal of Quantum Electronics, vol. 27 (3), p. 737, 1991.
[4] T. Takagahara et al., “Theory of quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Physical Review B, vol. 46, p. 15578, 1992.
[5] M. Asada et al., “Gain and the threshold of three-dimensional quantum-box laser,” IEEE Journal of Quantum Electronics, vol. 22 (9), p. 1915, 1986.
[6] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum dots formed by thermal oxidation of Si1-xGex-on-insulator,” Nanotechnology, vol. 18, p. 145402, 2007.
[7] J. E. Chang et al., “Matrix and quantum confinement effects on optical and thermal properties of Ge quantum dots,” Journal of Physics D: Applied Physics, vol. 45, p. 105303, 2012.
[8] C. Y. Chien et al., “Nanoscale, catalytically enhanced local oxidation of silicon-containing layers by ‘burrowing’ Ge quantum dots,” Nanotechnology, vol. 22, p. 435602, 2011.
[9] 張宇瑞,“鍺量子點在氮化矽中的形成機制與鍺量子點可見光光二極體的研製”,碩士論文,國立中央大學,民國一百年。
[10] C. C. Wang et al., “Controlled placement of 3D Ge quantum dot arrays: toward CMOS-compatible fabrication of nanophotonic and energy conversion devices,” accepted by IEEE nanotechnology.
[11] W. C. Dash et al., “Intrinsic optical absorption in single-crystal germanium and silicon at 77 oC and 300 oC,” Physical Review, vol. 99, p. 1151, 1955.
[12] D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100),” Physical Review Letters, vol. 64, p. 1943, 1990.
[13] Roosevelt people, “Physics and application of GexSi1-x/Si strained-layer heterostructures,” IEEE Journal of Quantum Electronics, vol. 22 (9), p. 1696, 1986.
[14] F. K. LeGoues et al., “Anomalous strain relaxation in SiGe thin films and superlattices,” Physical Review Letters, vol. 66, p. 2903, 1991.
[15] S. B. Samavedam and E. A. Fitzgerald, “Novel dislocation structure and surface morphology effects in relaxed Ge/Si-Ge(graded)/Si structure,” Journal of Applied Physics, vol. 81, p. 3108, 1997.
[16] H. C. Luan et al., “High-quality Ge epilayers on Si with low threading-dislocation densities,” Applied Physical Letters, vol. 75, p. 2909, 1999.
[17] Q. Li et al., “Selective growth of Ge on Si(100) through vias of SiO2 nanotemplate using solid source molecular beam epitaxy,” Applied Physical Letters, vol. 83, p. 5032, 2003.
[18] J. S. Park et al., “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping,” Applied Physical Letters, vol. 90, p. 052113, 2007.
[19] G. L. Luo et al., “The annihilation of threading dislocations in the germanium epitaxially growth within the silicon nanoscale trenches,” Journal of The Electrochemical Society, vol. 156 (9), H703, 2007.
[20] G. Kozlowski et al., “Compliant substrate versus plastic relaxation effects in Ge nanohetroepitaxy on free-standing Si(001) nanopillars,” Applied Physical Letters, vol. 99, p. 141901, 2011.
[21] H. I. Liu et al., “Self-limiting oxidation for fabrication sub-5 nm silicon nanowires,” Applied Physical Letters, vol. 64, p. 1383, 1994.
[22] T. J. King et al., “Deposition and properties of low-pressure chemical-vapor deposited polycrystalline slicon-germanium films,” Journal of The Electrochemical Society, vol. 141 (8), p. 2235, 1994.
[23] J. F. Morar et al., “Oxygen removal from Si via reaction with adsorbed Ge,” Applied Physical Letters, vol. 50, p. 463, 1987.
[24] M. Cao et al., “Low pressure chemical vapor deposition of Si1-xGex films on SiO2,” Journal of The Electrochemical Society, vol. 142 (5), p. 1566, 1995.
[25] K. H. Chen et al., “Precise Ge quantum dot placement for quantum tunneling devices,” Nanotechnology, vol. 21, p. 055302, 2010.
[26] J. M. Baribeau et al., “Growth and characterization Si1-xGex and Ge epilayers on (100)Si,” Journal of Applied Physics, vol. 63, p. 5738, 1988.
[27] Y. Yamamoto et al., “Low threading dislocation density Ge deposited on Si(100) using RPCVD,” Solid State Electronics, vol. 60, p. 2, 2011.
[28] S. S. Walavalkar et al., “Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars,” Nano Letters, vol. 10, p. 4423, 2010.
[29] D. B. Kao et al., “Two-dimensional thermal oxidation of Silicon-I. experiments,” IEEE Transaction on Electron Devices, vol. 34 (5), p.1009, 1987.