跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李佳毅
Chia-yi Lee
論文名稱: 衡量特定應用軟體系統相對複雜度之研究
Relative Complexity Measurement for Special Application software
指導教授: 周世傑
Shyh-Jye Jou
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理學系在職專班
Executive Master of Information Management
畢業學年度: 93
語文別: 中文
論文頁數: 52
中文關鍵詞: 軟體複雜度特定領域應用系統複雜度衡量
外文關鍵詞: complexity, software complexity, complexity metrics, measures of software complexity
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究嘗試針對特定應用領域的軟體系統,推導出一個能衡量出系統中程式與程式之間的相對複雜關係的複雜度衡量模式,並且嘗試驗證此模式的衡量結果在實務上能具有參考價值。
    因此,在特定領域軟體系統的選擇上,本研究選定國內某銀行建置在IBM Mainframe平台上,以IBM Mainframe COBOL語言撰寫的信用卡應用系統之程式做為衡量標的,從中挑選數支樣本程式並利用本研究推導的複雜度衡量模式加以衡量,以求取出這些樣本程式之相對複雜度排序。接著,本研究亦請負責維護這些樣本程式的程式人員,針對同樣的程式依其本身對程式複雜程度的認知,排出相對順序。最後,本研究驗證這二個複雜度排列順序之間,有高度的正相關存在。
    藉由與特定系統之程式開發人員本身,對於此系統中程式之複雜度認知的結果做比較,本研究證明了此衡量模式可應用在實務上之系統複雜度衡量上,並希望此衡量模式所產生的相對複雜度衡量結果,能對於軟體系統的一些特質的衡量,如開發人日工時的量測、系統錯誤率的量測等,有更進一步地幫助。


    In this study, we try to define a measure method which is sensitive to many software characteristics for the complexity of special application software.
    Thus, we choose a credit card system of a bank in Taiwan. The system environment of this credit card system is IBM z/OS390. The computer language used to write this system is IBM Mainframe COBOL. We randomly select several programs from the system to be the sample. We use our method to measure these programs’ complexity first, and then obtain these programs’ relative complexity by sorting their complexity measures. To verify if our method is acceptable, we also request some programmers who are responsible for the development of this credit card system to sort those sample programs by complexity. Then we use the correlation coefficient test to measure the association between the two sorting results.
    The correlation test shows that our measure method is acceptable. We hope the measure method can be applicable in some management work, for example, man power allocation for software development, the prediction of fault rate of a software system, etc..

    目錄 中文摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VI 第一章、 緒論 1 第一節、 研究背景與動機 1 第二節、 研究目的 2 第二章、 文獻探討 3 第一節、 軟體複雜度的定義 3 第二節、 軟體複雜度的影響來源 3 第三節、 衡量軟體複雜度的目的 4 第四節、 衡量軟體複雜度時的可能限制 5 第五節、 已發展之軟體複雜度衡量模式 7 第三章、 軟體相對複雜度評估之方式 16 第一節、 複雜度衡量因子之選定 16 第二節、 複雜度評量因子的加權 22 第三節、 程式複雜度估算模式 23 第四節、 以簡單範例程式說明本研究之複雜度估算模式 25 第五節、 相對複雜度評估說明 29 第四章、 實驗 31 第一節、 實驗方法說明 31 第二節、 複雜度衡量因子加權值的產生 31 第三節、 複雜度計算與排序 33 第四節、 專家的複雜度排序 34 第五節、 複雜度排序的相關檢定 35 第六節、 依複雜度分級的結果 36 第五章、 結論 39 第一節、 研究貢獻 39 第二節、 研究限制 40 第三節、 未來研究方向 40 參考文獻 41

    一、中文部份
    [1] 賴秀女, 2001,”軟體複雜度評估 - 一種修正的堆疊基馬可夫模式”,南華大學資訊管理研究所碩士論文。
    二、英文部份
    [2] Anneberg, L.and Singh, H., “Circuit theoretic approaches to determining software complexity” 36th. Midwest Symposium on Circuits and Systems Vol. 36/2. pp.895-898.
    [3] Basili, V.R., “Qualitative software complexity models: A summary”, In Tutorial on Models and Methods for Software Management and Engineering, IEEE Computer Society Press, Los Alamitos, Calif., 1980.
    [4] Conte, S. D., Dunsmore, H. E, and Shen, V. Y., “A Software Engineering Metrics and Models”, Benjamin-Cummings, Menlo Park, CA, 1986, pp. 396.
    [5] Edwards, William R.; Yang, Mingguey, and Kim, Jong Soo, “Application of the Stack-Based Markov Source to Software Analysis”, Proceeding, Minnowbrook Workshop on Software Engineering, July 1991, pp. 44-62.
    [6] Elshoff, James L., “Characteristic Program Complexity Measures”, International Conference on Software Engineering, Proceedings of the 7th international conference on software engineering, 1984, pp. 288 – 293.
    [7] Fenton, N., “Software measurement: a necessary scientific basis”, Software Engineering, IEEE Transactions on Volume 20, Issue 3, March 1994, pp.199 – 206.
    [8] Gordon, R. D., “Measuring Improvements in Program Clarity”, IEEE Transactions on Software Engineering, Vol. SE-5, NO. 2, Mar., 1979, pp.79-90.
    [9] Gray, R.b. and Caswell, D., “Software Metrics: Establishing a Company-wide Program”, Prentice Hall PTR, 1st edition, May 27, 1987.
    [10] Halstead, M. H., “Elements of Software Science, Operating and Programming Systems Service”, Elsevier, New York, 1977.
    [11] Henry, Sallic and Kafura, Dennis, “Software Structure Metrics Based on Information Flow”, IEEE Transactions on Software Engineering, vol. SE-7, no.5, September 1981, pp.510 -518.
    [12] McCabe, T. J., “A complexity measure”, IEEE Transactions of Software Engineering, Vol. SE-2, No. 4, Dec. 1976, pp. 308-320.
    [13] Ramamurthy, B. and Melton, A., ”A synthesis of software science measures and the cyclomatic number”, IEEE Transactions on Software Engineering, Volume 14, Issue 8, Aug. 1988, pp. 1116 – 1121.
    [14] Sedlmeyer , Robert L., Kearney , Joseph K., Thompson, William B., Adler, Michael A. and Gray , Michael A., “Problems with software complexity measurement”, Proceedings of the 1985 ACM thirteenth annual conference on Computer Science, March 1985, pp. 340-347.
    [15] Shannon, C. E., “A Mathematical Theory of Communication”, Bell Systems Technical Journal, vol. 27, 1948, pp. 379-423.
    [16] Shao, Jingqiu and Wang, Yingxu, “A New Measure of Software Complexity based on Cognitive Weights”, Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian Conference on Volume 2, 4-7 May 2003, pp. 1333 – 1338.
    [17] Wang, Yingxu, ”On the informatics laws of software”, Cognitive Informatics, 2002. Proceedings. First IEEE International Conference on 19-20, Aug. 2002, pp. 132 – 141.
    [18] Wangi, Yingxu and Wang, Ying, ” Cognitive models of the brain”, Cognitive Informatics, 2002. Proceedings. First IEEE International Conference on 19-20 Aug. 2002, pp. 259 – 269.
    [19] Wohlin, C., “Revisiting measurement of software complexity”, Software Engineering Conference, 1996, Proceedings, 1996 Asia-Pacific, 4-7 Dec. 1996, pp. 35 – 43.
    [20] Zolnowski, J. C. and Simmons, D. B., “Taking the Measure of Program Complexity”, Proceedings, National Computer Condference, 1981, pp. 329-336.

    QR CODE
    :::