| 研究生: |
林明琁 Grace Lin |
|---|---|
| 論文名稱: |
探討一個真核tRNA合成酶的附加區段之轉錄活化活性 A transcriptional activation domain in a eukaryotic tRNA synthetase |
| 指導教授: |
王健家
Chien-Chia Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | tRNA合成酶 、轉錄活化 |
| 外文關鍵詞: | transcriptional activation, tRNA synthetase |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
之前的研究顯示,酵母菌的valyl-tRNA 合成酶在胺基端有一段由
135 個胺基酸所組成並富含離胺酸(lysine)的多肽序列,這是原核細
胞的同源酵素所缺乏的,因此稱為附加區段。本實驗室之前的實驗結
果發現附加區段雖然帶有許多正電荷卻對酵母菌的tRNA沒有特別的
親和力,且刪除附加區段的酵素在in vitro 的功能和野生型的ValRS
又差不多。而進一步想利用yeast two-hybrid 的方式去篩選會和附加
區段作用的蛋白質,卻意外的發現附加區段自己本身就是一個轉錄活
化區段(transcriptional activation domain)。因此本論文會針對ValRS
附加區段對酵素活性的影響以及附加區段的轉錄活化特性去做進一
步的探討。首先用刪除株互補能力測試發現附加區段對ValRS 在in
vivo 中的酵素活性沒有明顯的影響,而初步的結果也顯示附加區段可
將蛋白質送到細胞核。而經片段刪除後也確認提供轉錄活化特性的最
小序列片段包含第98 到135 胺基酸。較令人意外的是:酵母菌其他
的aaRS 雖然也有一個富含離胺酸的附加區段,但是並沒有轉錄活化
的特性,而相近物種之ValRS 的附加區段也缺乏此功能。此例子是第
一次在真核細胞的aaRS 中發現有轉錄活化特性的附加區段,而探討
其在細胞內的生化意義之研究目前仍在持續進行中。
Previous studies show that valyl-tRNA synthetase of Saccharomyces cerevisiae
contains an amino-terminal, 135-amino acid lysine-rich polypeptide extension which
is absent from its bacterial relatives. We show here that this polypeptide extension is
largely dispensable for the aminoacylation activity of the enzyme in vivo and in vitro.
A truncated version of the enzyme with up to 83 amino-terminal residues deleted
rescues the growth defect of a yeast strain deficient in valyl-tRNA synthetase activity,
while an enzyme missing the lysine rich cluster retains much of its aminoacylation
activity in vitro. Furthermore, although rich in positively charged residues, this
polypeptide extension binds poorly to yeast tRNAs in vitro. These results suggest that
the appended domain of the translational enzyme may not be involved in tRNA
aminoacylation. Remarkably, when the appended domain is fused to a DNA-binding
protein (LexA), the resultant fusion can effectively activate the transcription of
reporter genes preceded by lexA operators. Similar activity is not observed in the
appended domains of glutaminyl-, isoleucyl-, and methionyl-tRNA synthetase of S.
cerevisiae. Transcriptional activation activity is also not detected in the appended
domains of valyl-tRNA synthetase of the yeasts Candida albicans and
Schizosaccharomyces pombe despite high sequence similarity to that of S. cerevisiae.
To our knowledge, this appears to be the first example in eukaryotes wherein an
appended domain of a tRNA synthetase contains a transcriptional activation activity.
Further studies are under way to elucidate possible non-canonical functions of
valyl-tRNA synthetase in vivo.
Abedi, M., Caponigro, G., Shen, J., Hansen, S., Sandrock, T., Kamb, A. (2001)
Transcriptional transactivation by selected short random peptides attached to
lexA-GFP fusion proteins. BMC Molecular Biology 2:10.
Arnez, J. G. and Moras, D. (1997) Structural and functional consideration
of the aminoacylation reaction. TIBS. 22: 211-216.
Azad, A. K., Stanford, D. R., Sarkar, S. and Hopper, A. K. (2001) Role of
nuclear pools of aminoacyl-tRNA synthetases in tRNA nuclear export.
Molecular Biology of the Cell. 12: 1381-1392.
Borgford, T. J., Brand, N. J., Gray, T. E. and Fersht, A. R. (1987) The
valyl-tRNA synthetase from Bacillus stearothermophilus has considerable
sequence homology with the isoleucyl-tRNA synthetase from Escherichia
coli. Biochemistry. 26: 2480-2486.
Burbaum, J. J. and Schimmel, P. (1991) Structional relationships and the
classification of aminoacyl-tRNA synthetases. J. Biol. Chem. 266:
16965-16968.
Cahuzac, B., Berthonneau, E., Birlirakis, N., Guittet, E. and Mirande, M.
(2000) A recurrent RNA-binding domain is appended to eukaryotic
aminoacyl-tRNA synthetases. EMBO J. 19: 445-452.
Chatton, B., Walter, P., Ebel, J. -P., Lacroute, F. and Fasiolo, F. (1988) The
yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA
synthetase. J. Biol. Chem. 263: 52-57.
36
Criekinge, W. V., Beyaert, R. (1999) Yeast two-hybrid: state of the art.
Biological Procedures Online. 2:1.
Cusack, S. (1997) Aminoacyl-tRNA synthetase. Current Opinion in Structural
Biology. 7: 881-889.
Eriani, G., Delarue, M., Poch, O., Gangloff, J. and Moras, D. (1990) Partition
of tRNA synthetases into two classes based on mutually exclusive sets of
sequence motifs. Nature. 347: 203-206.
Farrow, M. A., Nordin, B. E. and Schimmel, P. (1999) Nucleotide determinants
for tRNA-dependent amino acid discrimination by a class I tRNA synthetase.
Biochemistry. 38: 16898-16903.
Felter, S., Diatewa, M., Schneider, C. and Stahl, A. J. (1981) Yeast
mitochondrial and cytoplasmic valyl-tRNA synthetase. Biochem. Biophys.
Res. Commun. 98: 727-734.
Frugier, M., Florentz, C. and Giegé, R. (1992) Anticodon-independent
aminoacylation of an RNA minihelix with valine. Proc. Natl. Acad. Sci. 89:
3990-3994.
Galani, K., Grosshans, H. Deinert, K. Hurt, E. C. and Simos, G. (2001) The
intracellular location of two aminoacyl-tRNA synthetase depends on
complex formation with Arc1p. EMBO J. 20: 6889-6898.
Hale, S. P., Auld, D. S., Schmidt, E. and Schimmel, P. (1997) Discrete
determinants in transfer RNA for editing and aminoacylation. Science. 276:
1250-1252.
Hellmuth, K., Lau, D. M., Bischoff, R., Kunzler, M., Hurt, E., Simos, G.
37
(1998) Yeast Los1p has properties of an exportin-like nuleocytoplasmic
transport factor for tRNA. Molecular and Cellular Biology. 18: 6374-6386
Hashimoto, T., Sánchez, L. B., Shirakura, T., Műller, M. and Hasegawa, M.
(1998) Secondary absence of mitochondria in Giardia lamblia and
Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. Proc.
Natl. Acad. Sci. 95: 6860-6865.
Heck, J. D. and Hatfield, G. W. (1988) Valyl-tRNA synthetase gene of
Escherichia coli K12. J. Biol. Chem. 263: 857-867.
Hendrickson, T. L., Nomanbhoy, T. K. and Schimmel, P. (2000) Errors from
selective disruption of the editing center in a tRNA synthetase. Biochemistry.
39: 8180-8186.
Horowitz, J., Chu, W. C., Derrick, W. B., Liu, J. C. –H., Liu, M. and Yue, D.
(1999) Synthetase recognition determinants of E. coli valine transfer RNA.
Biochemistry. 38: 7737-7746.
Jordana, X., Chatton, B., Paz-Weissharr, M., Buhler, J.-M., Cramer, F., Ebel,
J. P., Fasiolo, F. (1987) Structure of the yeast valyl-tRNA synthetase gene
(VAS1) and the homology of its translated amino acid sequence with
Escherichia coli isoleucyl-tRNA synthetase. J. Biol.Chem. 262: 7189-7194.
Kaminska, M., Shalak, V. and Mirande, M. (2001) The appended C-domain of
human methionyl-tRNA synthetase has a tRNA-sequestering function.
Biochemistry. 40: 14309-14316.
Lin, L., Hale, S. P. and Schimmel, P. (1996) Aminoacylation error correction.
Nature. 384: 33-34.
Lin, L. and Schimmel, P. (1996) Mutational analysis suggests the same design
38
for editing activities of two tRNA synthetases. Biochemistry. 35: 5596-5601.
Luo, D., Leautey, J., Grunberg-Manago, M. and Putzer, H. (1997) Structure
and regulation of expression of the Bacillus subtilis valyl-tRNA synthetase
gene. J. Bacteriol. 179: 2472-2478.
Majmudar, C. Y., Lum, J. K., Prasov, L., Mapp, A. K. (2005) Functional
specificity of artificial transcriptional activators. Chemistry and Biology 12:
313-321.
Martinis, S. A., Plateau, P., Cavarelli, J., Florentz, C. (1999) Aminoacyl-tRNA
synthetases: a family of expanding functions. EMBO J. 18: 4591-4596.
Mirande, M. (1991) Aminoacyl-tRNA synthetase family from prokaryotes and
eukaryotes: structural domains and their implications. Prog Nucleic Acid Res
Mol Biol. 40: 95-142.
Monnier, A., Bellé, R., Morales, J., Cormier, P., Boulben, S. and
Mulner-Lorillon, O. (2001) Evidence for regulation of protein synthesis at
the elongation step by CDK1/cyclin B phosphrylation. Nucleic. Acids. Res.
29: 1453-1457.
Natsoulis, G., Hilger, F. and Fink, G. R. (1986) The HTS1 gene encodes both
the cytoplasmic and mitochondrial histidine tRNA synthetases of S.
cerevisiae. Cell. 46: 235-243.
Negrutskii, B. S., Shalak, V. F., Kerjan, P., El’skaya, A. V. and Mirande, M.
(1999) Functional interaction of mammalian valyl-tRNA synthetase with
elongation factor EF-1α in the complex with EF-1H. J. Biol. Chem. 274:
4545-4550.
Pouplana, L. R. and Schimmel, P. (2001) Two classes of tRNA synthetases
39
suggested by sterically compatible dockings on tRNA acceptor stem. Cell.
104: 191-193.
Quevillon, S. and Mirande, M. (1996) The p18 component of the
multisynthetase complex shares a protein motif with the β and γ subunits of
eukaryotic elongation factor 1. FEBS. 395: 63-67.
Schimmel, P. and Schmidt, E. (1995) Making connections: RNA-dependent
amino acid recognition. TIBS. 20:1-2.
Schimmel, P. and Wang, C. –C. (1999) Getting tRNA synthetases into the
nucleus. TIBS. 24: 127-128.
Souciet, G., Menand, B.,Ovesna, J., Cosset, A., Dietrich, A. and Wintz, H.
(1999) Characterization of two bifunctional Arabdopsis thaliana genes
coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and
threonyl-tRNA synthetase by alternative use of two in-frame AUGs. Eur. J.
Biochem. 266: 848-854.
Tardif, K. D., Liu, M., Vitseva, O., Hou, Y. M. and Horowitz, J. (2001)
Misacylation and editing by Escherichia coli valyl-tRNA synthetase:
evidence for two tRNA binding sites. Biochemistry. 40: 8118-8125.
Wang, C. –C. and Schimmel P. (1999) Species barrier to RNA recognition
overcome with nonspecific RNA binding domains. J. Biol. Chem. 274:
16508-16512.
Wang, C. –C., Morales, A. J. and Schimmel, P. (2000) Functional redundancy
in the nonspecific RNA binding domain of a class I tRNA synthetase. J. Biol.
Chem. 275: 17180-17186.
40
Weiner, A. M. (1999) Molecular evolution: aminoacyl-tRNA synthetases on the
loose. Current Biology. 9: 842-844.
Whelihan, E. F. and Schimmel, P. (1997) Rescuing an essential enzyme-RNA
complex with a non-essential appended domain. EMBO J. 16: 2968-2974.
謝佳容(2002)酵母菌valyl-tRNA synthetase 附加區段的
生物功能之探討. 中央大學生命科學研究所碩士論文.