| 研究生: |
許校瑋 Siao-wei Syu |
|---|---|
| 論文名稱: |
壓電式碰撞吸振器之減振機制 Analysis of Piezoelectric Impact Absorbers |
| 指導教授: |
黃以玫
Yii-Mei Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 碰撞 、吸振器 、壓電 |
| 外文關鍵詞: | piezoelectric, absorbers, impact |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要目的在探討壓電式碰撞吸振器應用於懸臂樑的減振效果。在懸臂樑的表面適當位置處,貼附成對壓電材料,並外接由電阻及電感等電子元件組成的吸振電路,形成具有減振效果之吸振器,而本文之吸振電路形式為標準式被動吸振電路並聯一個二極體與其他電子元件,如電感與電阻,並藉由二極體的導通與不導通的切換情形,模擬機械系統中的碰撞運動,此即文中所謂之壓電式碰撞吸振器。
首先假設施予樑上的外力形式為簡諧集中力,且令外力激振頻率等於懸臂樑與壓電材料之複合系統的第一自然頻率,接著使用漢米爾頓原理推導懸臂樑與壓電材料之耦合運動方程式,並將其與吸振電路方程式作聯立,最後利用數值方法求解聯立方程式,解得系統之位移響應。透過各種分析結果,說明此一壓電式碰撞吸振器確實有優於標準式被動吸振器之減振效果,同時也說明此一壓電式碰撞吸振器可藉由二極體的導通與否,模擬機械系統中的碰撞運動且造成能量的損耗。
The purpose of this research is to reduce the vibration of a cantilever beam by using piezoelectric impact absorbers. Each absorber consists of a piezoelectric sheet, inductances, resistances and a diode which simulating the mechanical impact effect by switching of the circuit on and off.
A composite cantilever beam is subjected to an external harmonic force with its frequency equal to the natural frequency of the beam. The equations of motion of the beam are derived by Hamilton''s principle and discretized by Galerkin''s method. The equations of motion of the beam and the circuit equations of impact absorbers are solved simultaneously. The numerical results show that piezoelectric impact absorbers are more effective than the traditional piezoelectric absorbers.
吳朗, 1994, 電子陶瓷-壓電, 全新科技出版社, 台北市.
莊家明, 2008, “自感式壓電吸振器應用於旋轉雷利夫樑之減振分析”, 國立中央大學機械工程研究所碩士論文, 桃園縣.
彭國倫, 2001, Fortran 95程式設計, 碁峰資訊股份有限公司
黃鈺書, 2010, “狀態變換壓電吸振器之初探”, 國立中央大學機械工程研究所碩士論文, 桃園縣.
Aoki, S. and Watanabe, T., 2006, “An investigation of an impact vibration absorber with hysteresis damping,” ASME Journal of Pressure Vessel Technology, Vol. 128, pp. 508-515.
Clark, W.W., 2000, “Vibration control with state-switched piezoelectric materials,” Journal of Intelligent Material Systems and Structures, Vol. 11, pp. 263-271.
Collette, F.S., 1998, “A combined tuned absorber and pendulum impact damper under random excitation,” Journal of Sound and Vibration, Vol. 216, pp. 199-213.
Corr, L.R. and Clark, W.W., 2002, “Comparison of low-frequency piezoelectric switching shunt techniques for structural damping,” Smart Materials and Structures, Vol. 11, pp. 370–376.
Ekwaro-Osire, S. and Desen, I.C., 2001, “Experimental study on an impact vibration absorber,” Journal of Vibration and Control, Vol. 7, pp. 471-493.
Guyomar, D. and Badel, A., 2006, “Nonlinear semi-passive multimodal vibration damping: an efficient probabilistic approach,” Journal of Sound and Vibration, Vol. 294, pp. 249–268
Hagood, N.W. and von Flotow, A., 1991, “Damping of Structural Vibrations with Piezoelectric Materials and Passive Electrical Networks”, Journal of Sound and Vibration, Vol. 146, pp. 243-268.
Holdhusen, M.H. and Cunefare, K.A., 2003, “Damping effects on the state-switched absorber used for vibration suppression,” Journal of Intelligent Material Systems and Structures, Vol. 14, pp. 551-561.
Meirovitch, L., 2001, Fundamentals of Vibrations, McGraw-Hill.
Park, C.H., 2003, “Dynamics Modeling of Beams with Shunted Piezoelectric Elements”, Journal of Sound and Vibration, Vol. 268, pp. 115-129.
Tiersten, H.F., 1969, Linear Piezoelectric Plate Vibrations, Plenum, New York.
Zimmerman, R.A., Celaschi, S., and Neto, L.G., 1992, “Electronic bouncing ball,” American Journal of Physics, Vol. 60, pp. 370-375.