跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳昱霖
Yu-Lin Chen
論文名稱: 具空時排列之空時區塊編碼的空間調變
Space-Time Block-Coded Spatial Modulation with Spatial and Temporal Permutations
指導教授: 魏瑞益
Ruey-Yi Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 69
中文關鍵詞: 空間調變空時區塊編碼
外文關鍵詞: spatial modulation, space-time block code
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在先前的空時區塊編碼(Space-time block-coded, STBC)之空間調變(spatial modulation, SM)中,使用時間排列以增加傳送速率,在本篇論文中,我們提出兩種空時區塊編碼之空間調變(Space-time block-coded spatial modulation, STBC-SM)的排列方式以增加傳送速率。第一種是我們嘗試不對時間進行排列而是對空間進行排列,該方案被稱為具有空間排列的空時區塊編碼(STBC-SM with spatial permutation)。在第二種架構中,除了原本存在於空時區塊編碼之相差空間調變的時間排列外,我們結合了空間上的排列。透過選擇時間與空間的排列樣式,比起現有的空時區塊編碼之空間調變具有更高的頻寬效益。該方案被稱為具有空間與時間排列的空時區塊編碼(STBC-SM with spatial and temporal permutation)。所提出的空間與時間排列可應用於其他STBC-SM方案以提高其頻譜效率。分析電腦模擬結果表明,除了頻寬效率的優勢之外,從電腦模擬可以看出,使用空間與時間排列的STBC-SM系統比原始系統提供更好的錯誤率表現。


    In the previous spatial modulation (SM) with space-time block coded (STBC) scheme, temporal permutation was employed to increase spectral efficiency. In this paper, we propose two methods to further enhance the spectral efficiency of spatial modulation with STBC. The first method involves arranging antennas instead of time, termed as STBC-SM with Spatial Permutation(STBC-SM-SP). In the second framework, in addition to the temporal permutation inherent in STBC-SM, we integrate spatial permutation. By selecting patterns of temporal and spatial permutation, our proposed scheme, termed as STBC-SM with Spatial and Temporal Permutation(STBC-SM-STP), achieves higher bandwidth efficiency compared to existing spatial modulation with STBC. The introduced temporal and spatial permutations can be applied to other STBC-SM schemes to enhance their spectral efficiency. Analysis of computer simulation results demonstrates that, apart from the bandwidth efficiency advantage, the STBC-SM system with Spatial and Temporal permutations design provide better error performance than the original system.

    摘要 IV Abstract V 致謝 VI 目錄 VII 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 背景與研究動機 1 第二章 相關背景回顧 3 2.1 通道模型和STBC-SM方案回顧 3 2.2 具時間排列之區塊編碼的空間調變 5 2.2.1 傳送端 5 2.2.2 排列樣式 8 2.2.3 具時間排列之區塊編碼的空間調變範例 12 2.2.4 低複雜最大可能性檢測器 15 第三章 具空間排列的空時區塊編碼之空間調變 17 3.1 空間排列定義與使用空間排列的原形架構 17 3.2 用在論文[6]的排列樣式 20 3.3 具空間排列之區塊編碼的空間調變例子 24 3.4 低複雜最大可能性檢測器 27 3.5 模擬結果 29 第四章 具空時排列的空時區塊編碼之空間調變 34 4.1 傳送端架構及排列樣式 34 4.2 具空時排列之區塊編碼的空間調變例子 36 4.3 低複雜最大可能性檢測器 40 4.4 性能分析 42 4.5 適用架構 45 4.6 模擬結果 46 第五章 結論 54 參考文獻 55

    [1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
    [2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12,no. 8, pp. 545–547, Aug. 2008.
    [3] M. Renzo, H. Haas, and P. Grant, “Spatial modulation for multiple-antenna wireless systems: A survey,” IEEE Commun. Mag., vol. 49,no. 12, pp. 182–191, Dec. 2011.
    [4] P. Yang, M. D. Renzo, Y. Xiao, S. Li and L. Hanzo, “Design guidelines for spatial modulation,” IEEE Commun. Surveys & Tutorials, vol. 17, no. 1, pp. 6-26, First Quarter 2015.
    [5] M. Wen, B. Zheng, K. J. Kim, M. Renzo, T. A. Tsiftsis, K.-C. Chen, and N. Al-Dhahir, “A survey on spatial modulation in emerging wireless systems: Research progresses and applications”, IEEE J. Select. Areas Commun., vol. 37, pp. 1949-1972, Sep. 2019.
    [6] E. Basar, U. Aygolu, E. Panayirci and H. V. Poor, “Space-time block coded spatial modulation,” IEEE Trans. Commun., vol. 59, no. 3, pp. 823-832, Mar. 2011.
    [7] X. Li and L. Wang, “High rate space-time block coded spatial modulation with cyclic structure,” IEEE Commun. Lett., vol. 18, no. 4, pp. 532535, Apr. 2014.
    [8] A. G. Helmy, M. Di Renzo, and N. Al-Dhahir, “Enhanced-reliability cyclic generalized spatial-and-temporal modulation,” IEEE Commun. Lett., vol. 20, no. 12, pp. 23742377, Dec. 2016.
    [9] L. Wang, “Stacked Alamouti based spatial modulation,” IEEE Trans. Commun., vol. 67, no. 1, pp.336-349, Jan. 2019.
    [10] L. Wang and Z. Chen, “High-rate spatial modulation transmission scheme with block-orthogonal structure and block-by-block sphere decoding,” IEEE Access, vol. 8, no. 1, pp. 7032-7039, Jan. 2020.
    [11] M. T. Le, V. D. Ngo, H. A. Mai, X. N. Tran, and M. Di Renzo, “Spatially modulated orthogonal space-time block codes with nonvanishing determinants,” IEEE Trans. Commun., vol. 62, no. 1, pp. 85-99, Jan. 2014.
    [12] M. T. Le, T. D. Nguyen, and V. D. Ngo, “On the combination of double space time transmit diversity with spatial modulation,” IEEE Trans. Wireless Comm., vol. 17, no. 1, pp. 170-181, Jan. 2018.
    [13] C. Jeon and J. W. Lee, “Multi-strata space-time coded spatial modulation,” IEEE Commun. Lett., vol. 19, no. 11, pp. 19451948, Nov. 2015.
    [14] L. Xiao, D. Chen, I. Hemadeh, P. Xiao, and T. Jiang, “Generalized space time block coded spatial modulation for open-loop massive mimo downlink communication systems,” IEEE Trans. Commun., vol. 68, no. 11, pp. 6858-6871, Nov. 2020.
    [15] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451- 1458, Oct. 1998.
    [16] R. Mesleh, S. S. Ikki, and H. M. Aggoune, “Quadrature spatial modulation,” IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2738-2742, Jun. 2015.
    [17] L. Wang, Z. Chen, Z. Gong, and M. Wu, “Diversity-achieving quadrature spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 12, pp. 10764-10775, Dec. 2017.
    [18] L. Wang and Z. Chen, “Enhanced diversity-achieving quadrature spatial modulation with fast decodability,” IEEE Trans. Veh. Technol., vol. 69, no. 6, pp. 6165-6177, Jun. 2020.
    [19] C. Li, L. Wang, and G. Nie, “Quadrature spatial modulation with the fourth order transmit diversity and low-complexity sphere decoding for large-scale MIMO systems”, IEEE Trans. Veh. Technol., vol. 71, no.8, pp.8603-8614, Aug. 2022.
    [20] R. Y. Wei, S. L. Chen, Y. H. Lin, and B. C. Chen, “Bandwidth-efficient generalized differential spatial modulation,” IEEE Trans. Veh. Technol. , vol. 72, no. 1, pp. 601-610, Jan. 2023.
    [21] R. Y. Wei, C. W. Chang, and Y. F. Cheng, “Temporal permutations in different accumulated blocks of space-time block-coded spatial modulation,” IEEE Trans. Veh. Technol., 2024 (revised).
    [22] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998.
    [23] M. S. Alaouni and M. K. Simon, Digital Communications over Fading Channels, 2nd Edition, John & Wiley, 2005.

    QR CODE
    :::